Equilibrium Point and Phase Portrait of a Model for Flow of Tixotropic Media Accounting for Structure Evolution

We continue the systematic analytical study of a nonlinear Maxwell-type constitutive equation for shear flow for thixotropic viscoelastic media accounting for interaction of deformation process and structure evolution, namely, the influence of the kinetics formation and breakage of chain cross-links...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Moscow University mechanics bulletin 2023-08, Vol.78 (4), p.91-101
1. Verfasser: Khokhlov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We continue the systematic analytical study of a nonlinear Maxwell-type constitutive equation for shear flow for thixotropic viscoelastic media accounting for interaction of deformation process and structure evolution, namely, the influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. We formulated it in the previous article and reduced it to the set of two nonlinear autonomous differential equations for two unknown functions (namely, the stress and relative cross-links density). We examine the phase portrait of the system for arbitrary (increasing) material function and six (positive) material parameters governing the model and prove that the (unique) equilibrium point is stable and the only three cases are realized: the equilibrium point is either a stable sink, or a degenerated stable sink, or a stable spiral sink. We found criteria for every case in the form of explicit restrictions on the material function and parameters and shear rate.
ISSN:0027-1330
1934-8452
DOI:10.3103/S0027133023040039