Existence of ground states for fractional Choquard–Kirchhoff equations with magnetic fields and critical exponents
In this paper, we consider the following fractional Choquard–Kirchhoff equation with magnetic fields and critical exponents M ( [ u ] s , A 2 ) ( - Δ ) A s u + V ( x ) u = [ | x | - α ∗ | u | 2 α , s ∗ ] | u | 2 α , s ∗ - 2 u + λ f ( x , u ) in R N , where N > 2 s with 0 < s < 1 , λ > 0...
Gespeichert in:
Veröffentlicht in: | Periodica mathematica Hungarica 2023-12, Vol.87 (2), p.468-483 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the following fractional Choquard–Kirchhoff equation with magnetic fields and critical exponents
M
(
[
u
]
s
,
A
2
)
(
-
Δ
)
A
s
u
+
V
(
x
)
u
=
[
|
x
|
-
α
∗
|
u
|
2
α
,
s
∗
]
|
u
|
2
α
,
s
∗
-
2
u
+
λ
f
(
x
,
u
)
in
R
N
,
where
N
>
2
s
with
0
<
s
<
1
,
λ
>
0
,
A
=
(
A
1
,
A
2
,
…
,
A
n
)
∈
(
R
N
,
R
N
)
is a magnetic potential,
2
α
,
s
∗
=
(
2
N
-
α
)
/
(
N
-
2
s
)
is the fractional Hardy—Littlewood—Sobolev critical exponent with
0
<
α
<
2
s
,
M
(
[
u
]
s
,
A
2
)
=
a
+
b
[
u
]
s
,
A
2
with
a
,
b
>
0
,
u
∈
(
R
N
,
C
)
is a complex valued function,
V
∈
L
∞
(
R
N
)
and
f
∈
(
R
N
×
R
,
R
)
are continuous functions,
(
-
Δ
)
A
s
is a fractional magnetic Laplacian operator. Under some suitable assumptions, by applying the Nehari method and the concentration-compactness principle, we obtain the existence of ground state solutions. |
---|---|
ISSN: | 0031-5303 1588-2829 |
DOI: | 10.1007/s10998-023-00528-3 |