Radius theorems for subregularity in infinite dimensions
The paper continues our previous work (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) on the radius of subregularity that was initiated by Asen Dontchev. We extend the results of (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) to general Banach/Asplund spaces and to other classes...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2023-12, Vol.86 (3), p.1117-1158 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper continues our previous work (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) on the radius of subregularity that was initiated by Asen Dontchev. We extend the results of (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) to general Banach/Asplund spaces and to other classes of perturbations, and sharpen the coderivative tools used in the analysis of the robustness of
well-posedness
of mathematical problems and related
regularity
properties of mappings involved in the statements. We also expand the selection of classes of perturbations, for which the formula for the radius of strong subregularity is valid. |
---|---|
ISSN: | 0926-6003 1573-2894 |
DOI: | 10.1007/s10589-022-00431-6 |