Mid-wavelength infrared photoconductive film synthesized from PbSe molecular ink

Metal chalcogenide thin films are used in a wide range of modern technological applications. While vacuum deposition methods are commonly utilized to fabricate the film, solution-based approaches have garnered an increasing interest due to their potential for low-cost, high-throughput manufacturing,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-11, Vol.123 (20)
Hauptverfasser: Al Mahfuz, Mohammad M., Islam, Rakina, Zhang, Yuxuan, Baek, Jinwook, Park, Junsung, Lee, Sunghwan, Ko, Dong-Kyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal chalcogenide thin films are used in a wide range of modern technological applications. While vacuum deposition methods are commonly utilized to fabricate the film, solution-based approaches have garnered an increasing interest due to their potential for low-cost, high-throughput manufacturing, and compatibility with silicon complementary metal–oxide–semiconductor processing. Here, we report a general strategy for preparing mid-wavelength infrared (MWIR = 3–5 μm) photoconductive film using a PbSe molecular ink. This ethylenediamine-based ink solution is synthesized using a simple diphenyl dichalcogenide route, and the deposited film, after the sensitization annealing, exhibits a specific detectivity of 109 Jones at 3.5 μm at room temperature. This work represents the demonstration of MWIR-photosensitive semiconductor films prepared using an emerging alkahest-based approach, highlighting a significant research avenue in the pursuit toward low SWAP-C (size, weight, power consumption, and cost) infrared imager development.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0179127