Steady streaming under a surface wave propagating over a rough bottom: A model of the bottom boundary layer
The steady streaming generated by nonlinear effects at the bottom of a propagating surface wave is determined when the bottom is characterized by a roughness, the size of which scales with the boundary layer thickness. Therefore, the cornerstone contribution by Longuet-Higgins, who considered a smoo...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2023-11, Vol.35 (11) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The steady streaming generated by nonlinear effects at the bottom of a propagating surface wave is determined when the bottom is characterized by a roughness, the size of which scales with the boundary layer thickness. Therefore, the cornerstone contribution by Longuet-Higgins, who considered a smooth bottom, is extended to sea waves and sandy bottoms characterized by a grain size that ranges from fine silt to fine gravel. For values of the grain size
d
* up to
0.05
δ
*
,
δ
* being the thickness of the viscous bottom boundary layer, the velocity profile is practically coincident with that predicted by Longuet-Higgins. If the grain size is further increased, the steady velocity component becomes larger and reaches a maximum value that is approximately 70% larger than that predicted by Longuet-Higgins. The maximum of the steady velocity component is attained for
d
*
=
0.6
δ
*. A further increase in
d
* leads to a decrease in the steady velocity component that, however, keeps always larger than that predicted for a smooth bottom. As the roughness size increases up to the values typical of medium sand, the steady velocity component increases. Then, a further increase in the roughness size leads to a decrease in the steady streaming even though, in the range of the roughness size presently investigated, the steady velocity component is always larger than that predicted for a smooth bottom. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0169807 |