Nonexistence of extremals for an improved Adimurthi-Druet inequality involving Lp-norm on a closed Riemann surface

It is well known that the Adimurthi-Druet inequality admits extremal function, when the perturbation parameter is sufficiently small. As for the question of when extremal function does not exist, Mancini-Thizy first solved this problem by the method of energy estimate in (J. Differential Equations)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1)
1. Verfasser: Zhang, Mengjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that the Adimurthi-Druet inequality admits extremal function, when the perturbation parameter is sufficiently small. As for the question of when extremal function does not exist, Mancini-Thizy first solved this problem by the method of energy estimate in (J. Differential Equations). After that Yang extended the work to a closed Riemann surface in (Sci. China Math.). In this paper, we generalize Yang’s result to a version involving L p -norms for any p > 1 . Moreover, this work complements our result in (Acta Math. Sin.) and extends Wang’s result (Commun. Pure Appl. Anal.) in Euclidean space.
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-023-01522-7