Nonexistence of extremals for an improved Adimurthi-Druet inequality involving Lp-norm on a closed Riemann surface
It is well known that the Adimurthi-Druet inequality admits extremal function, when the perturbation parameter is sufficiently small. As for the question of when extremal function does not exist, Mancini-Thizy first solved this problem by the method of energy estimate in (J. Differential Equations)....
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that the Adimurthi-Druet inequality admits extremal function, when the perturbation parameter is sufficiently small. As for the question of when extremal function does not exist, Mancini-Thizy first solved this problem by the method of energy estimate in (J. Differential Equations). After that Yang extended the work to a closed Riemann surface in (Sci. China Math.). In this paper, we generalize Yang’s result to a version involving
L
p
-norms for any
p
>
1
. Moreover, this work complements our result in (Acta Math. Sin.) and extends Wang’s result (Commun. Pure Appl. Anal.) in Euclidean space. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-023-01522-7 |