Effect of dopants in the HTL layer on photovoltaic properties in hybrid perovskite solar cells

The performance of CH 3 NH 3 PbI 3 based perovskite materials deposited on Al-doped ZnO film is correlated with carrier extraction, surface, and film qualities of the hole transporting layers(HTLs). Changing the surface properties of HTL with both EG and triton X-100 into PEDOT: PSS in the ratio of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2023-11, Vol.34 (32), p.2138, Article 2138
Hauptverfasser: Sardar, R. H., Bera, A., Chattopadhyay, S., Mahato, J. C., Sarraf, S., Basu, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of CH 3 NH 3 PbI 3 based perovskite materials deposited on Al-doped ZnO film is correlated with carrier extraction, surface, and film qualities of the hole transporting layers(HTLs). Changing the surface properties of HTL with both EG and triton X-100 into PEDOT: PSS in the ratio of 2:1. This shows better conductivity, good film formation, higher hole mobility, and negligible hysteresis in halide perovskite-based solar cells. In this present work, 10% of efficiency has been achieved by adding co-dopants in PEDOT: PSS layer in the Al–ZnO/CH 3 NH 3 PbI 3 /PEDOT: PSS heterostructure with a cost-effective method. Not only better hole extraction of PEDOT: PSS is observed after co-doped it with EG and triton X-100 but also higher efficiency is observed in the heterostructure.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-023-11535-y