Leveraging Speculative Sampling and KV-Cache Optimizations Together for Generative AI using OpenVINO

Inference optimizations are critical for improving user experience and reducing infrastructure costs and power consumption. In this article, we illustrate a form of dynamic execution known as speculative sampling to reduce the overall latency of text generation and compare it with standard autoregre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Barad, Haim, Aidova, Ekaterina, Gorbachev, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inference optimizations are critical for improving user experience and reducing infrastructure costs and power consumption. In this article, we illustrate a form of dynamic execution known as speculative sampling to reduce the overall latency of text generation and compare it with standard autoregressive sampling. This can be used together with model-based optimizations (e.g. quantization) to provide an optimized solution. Both sampling methods make use of KV caching. A Jupyter notebook and some sample executions are provided.
ISSN:2331-8422