Optimal capacity allocation and economic evaluation of hybrid energy storage in a wind–photovoltaic power system

During the global energy crisis, a significant influx of renewable energy sources was connected to the power grid, resulting in adverse fluctuations. To address this challenge and simultaneously reduce environmental pollution, a hybrid energy storage system containing hydrogen energy storage (HES) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of renewable and sustainable energy 2023-11, Vol.15 (6)
Hauptverfasser: Wang, Xiu Li, Xu, Ru Qing, Zhang, Jian Hong, Wen, Fu Shuan, Liu, Chang Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the global energy crisis, a significant influx of renewable energy sources was connected to the power grid, resulting in adverse fluctuations. To address this challenge and simultaneously reduce environmental pollution, a hybrid energy storage system containing hydrogen energy storage (HES) and compressed air energy storage (CAES) are proposed. The system aims to reconfigure the energy storage devices by an economical means and effectively alleviate the volatility challenges by the large amount of renewable energy accessing. First, according to the behavioral characteristics of wind, photovoltaics, and the energy storage, the hybrid energy storage capacity optimization allocation model is established, and its economy is nearly 17% and 4.7% better than that of single HES and single CAES, respectively. Then, considering the difficulty of solving the complexity dimension, a carnivorous plant algorithm (CPA) is adopted to solve the model and accurately obtain the strategy of hybrid energy storage configuration in this paper. The running time of a CPA algorithm is 33.6%, 36%, and 55% shorter than particle swarm optimization, whale optimization algorithm, and firefly algorithm, respectively. Finally, the simulation analysis is performed by IEEE 33 node arithmetic. The results show that the network loss with hybrid energy storage is reduced by about 40% compared with that without hybrid energy storage. However, improving voltage stability and the economy is optimal by using configured hybrid energy storage.
ISSN:1941-7012
1941-7012
DOI:10.1063/5.0165774