Prediction of Heat and Cold Loads of Factory Mushroom Houses Based on EWT Decomposition

Load forecasting has significant implications on optimizing the operation of air conditioning systems for industrial mushroom houses and energy saving. This research paper presents a novel approach for short-term load forecasting in mushroom houses, which face challenges in accurately modeling cold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-10, Vol.15 (21), p.15270
Hauptverfasser: Zuo, Hesen, Zheng, Wengang, Wang, Mingfei, Zhang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Load forecasting has significant implications on optimizing the operation of air conditioning systems for industrial mushroom houses and energy saving. This research paper presents a novel approach for short-term load forecasting in mushroom houses, which face challenges in accurately modeling cold and heat loads due to the complex interplay of various factors, including climatic conditions, mushroom growth, and equipment operation. The proposed method combines empirical wavelet transform (EWT), hybrid autoregressive integrated moving average (ARIMA), convolutional neural network (CNN), and bi-directional long short-term memory (BiLSTM) with an attention mechanism (CNN-BiLSTM-Attention) to address these challenges. The first step of this method was to select input features via the Boruta algorithm. Then, the EWT method was used to decompose the load data of mushroom houses into four modal components. Subsequently, the Lempel–Ziv method was introduced to classify the modal components into high-frequency and low-frequency classes. CNN-BiLSTM-Attention and ARIMA prediction models were constructed for these two classes, respectively. Finally, the predictions from both classes were combined and reconstructed to obtain the final load forecasting value. The experimental results show that the Boruta algorithm selects key influential feature factors effectively. Compared to the Spearman and Pearson correlation coefficient methods, the mean absolute error (MAE) of the prediction results is reduced by 14.72% and 3.75%, respectively. Compared to the ensemble empirical mode decomposition (EEMD) method, the EWT method can reduce the decomposition reconstruction error by an order of magnitude of 103, effectively improving the accuracy of the prediction model. The proposed model in this paper exhibits significant advantages in prediction performance compared to the single neural network model, with the MAE, root mean square error (RMSE), and mean absolute percentage error (MAPE) of the prediction results reduced by 31.06%, 26.52%, and 39.27%, respectively.
ISSN:2071-1050
2071-1050
DOI:10.3390/su152115270