What Machine Learning Can Do for Focusing Aerogel Detectors
Particle identification at the Super Charm-Tau factory experiment will be provided by a Focusing Aerogel Ring Imaging CHerenkov detector (FARICH). Silicon photomultipliers used for the Cherenkov light detection generate a lot of noise hits that must be mitigated to reduce both the data flow and nega...
Gespeichert in:
Veröffentlicht in: | Physics of atomic nuclei 2023-10, Vol.86 (5), p.864-868 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Particle identification at the Super Charm-Tau factory experiment will be provided by a Focusing Aerogel Ring Imaging CHerenkov detector (FARICH). Silicon photomultipliers used for the Cherenkov light detection generate a lot of noise hits that must be mitigated to reduce both the data flow and negative effects on particle velocity resolution. In this work we present our approach to filtering signal hits, inspired by object detection techniques for computer vision. Several ML-based approaches to the FARICH reconstruction problem in different settings are also discussed. |
---|---|
ISSN: | 1063-7788 1562-692X |
DOI: | 10.1134/S106377882305037X |