Iterates of meromorphic functions on escaping Fatou components
In this paper, we prove that the ratio of the modulus of the iterates of two points in an escaping Fatou component could be bounded even if the orbit of the component contains a sequence of annuli whose moduli tend to infinity, and this cannot happen when the maximal modulus of the meromorphic funct...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2023-12, Vol.153 (6), p.1906-1928 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove that the ratio of the modulus of the iterates of two points in an escaping Fatou component could be bounded even if the orbit of the component contains a sequence of annuli whose moduli tend to infinity, and this cannot happen when the maximal modulus of the meromorphic function is uniformly large enough. In this way we extend certain related results for entire functions to meromorphic functions with infinitely many poles. |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/prm.2022.76 |