Achieving a highly efficient triboelectric nanogenerator via a charge reversion process
Many efforts have been devoted to improving the performance of triboelectric nanogenerators (TENGs). However, achieving a high surface charge density (SCD) and an efficient energy utilization remains challenging. Here, a TENG based on a charge reversion process arising from the electrostatic breakdo...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2023-11, Vol.16 (11), p.5294-5304 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many efforts have been devoted to improving the performance of triboelectric nanogenerators (TENGs). However, achieving a high surface charge density (SCD) and an efficient energy utilization remains challenging. Here, a TENG based on a charge reversion process arising from the electrostatic breakdown effect has been designed, which is supported by a modified dielectric capacitance model. The SCD increases 8-fold without being affected by the initial contact efficiency of materials. Furthermore, the output energy of TENG is enhanced significantly, after using the power management system (PMS) made by a simple circuit design, and the average output power density enhances 22-fold at 5 V compared to that without using PMS. This work not only proposes a strategy for building highly efficient TENGs, but also establishes a modified dielectric capacitance model considering the air breakdown effect for understanding the surface charge transfer behavior in TENGs. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/D3EE02614K |