A NOTE ON GENERALISED WALL–SUN–SUN PRIMES

Let a and b be positive integers and let $\{U_n\}_{n\ge 0}$ be the Lucas sequence of the first kind defined by $$ \begin{align*}U_0=0,\quad U_1=1\quad \mbox{and} \quad U_n=aU_{n-1}+bU_{n-2} \quad \mbox{for }n\ge 2.\end{align*} $$ We define an $(a,b)$ -Wall–Sun–Sun prime to be a prime p such that $\g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2023-12, Vol.108 (3), p.373-378
Hauptverfasser: HARRINGTON, JOSHUA, JONES, LENNY
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let a and b be positive integers and let $\{U_n\}_{n\ge 0}$ be the Lucas sequence of the first kind defined by $$ \begin{align*}U_0=0,\quad U_1=1\quad \mbox{and} \quad U_n=aU_{n-1}+bU_{n-2} \quad \mbox{for }n\ge 2.\end{align*} $$ We define an $(a,b)$ -Wall–Sun–Sun prime to be a prime p such that $\gcd (p,b)=1$ and $\pi (p^2)=\pi (p),$ where $\pi (p):=\pi _{(a,b)}(p)$ is the length of the period of $\{U_n\}_{n\ge 0}$ modulo p. When $(a,b)=(1,1)$ , such primes are known in the literature simply as Wall–Sun–Sun primes. In this note, we provide necessary and sufficient conditions such that a prime p dividing $a^2+4b$ is an $(a,b)$ -Wall–Sun–Sun prime.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972723000138