A NOTE ON GENERALISED WALL–SUN–SUN PRIMES
Let a and b be positive integers and let $\{U_n\}_{n\ge 0}$ be the Lucas sequence of the first kind defined by $$ \begin{align*}U_0=0,\quad U_1=1\quad \mbox{and} \quad U_n=aU_{n-1}+bU_{n-2} \quad \mbox{for }n\ge 2.\end{align*} $$ We define an $(a,b)$ -Wall–Sun–Sun prime to be a prime p such that $\g...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2023-12, Vol.108 (3), p.373-378 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let a and b be positive integers and let
$\{U_n\}_{n\ge 0}$
be the Lucas sequence of the first kind defined by
$$ \begin{align*}U_0=0,\quad U_1=1\quad \mbox{and} \quad U_n=aU_{n-1}+bU_{n-2} \quad \mbox{for }n\ge 2.\end{align*} $$
We define an
$(a,b)$
-Wall–Sun–Sun prime to be a prime p such that
$\gcd (p,b)=1$
and
$\pi (p^2)=\pi (p),$
where
$\pi (p):=\pi _{(a,b)}(p)$
is the length of the period of
$\{U_n\}_{n\ge 0}$
modulo p. When
$(a,b)=(1,1)$
, such primes are known in the literature simply as Wall–Sun–Sun primes. In this note, we provide necessary and sufficient conditions such that a prime p dividing
$a^2+4b$
is an
$(a,b)$
-Wall–Sun–Sun prime. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972723000138 |