Edge2Node: Reducing Edge Prediction to Node Classification

Despite the success of graph neural network models in node classification, edge prediction (the task of predicting missing or potential links between nodes in a graph) remains a challenging problem for these models. A common approach for edge prediction is to first obtain the embeddings of two nodes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
1. Verfasser: Rahmati, Zahed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the success of graph neural network models in node classification, edge prediction (the task of predicting missing or potential links between nodes in a graph) remains a challenging problem for these models. A common approach for edge prediction is to first obtain the embeddings of two nodes, and then a predefined scoring function is used to predict the existence of an edge between the two nodes. Here, we introduce a preliminary idea called Edge2Node which suggests to directly obtain an embedding for each edge, without the need for a scoring function. This idea wants to create a new graph H based on the graph G given for the edge prediction task, and then suggests reducing the edge prediction task on G to a node classification task on H. We anticipate that this introductory method could stimulate further investigations for edge prediction task.
ISSN:2331-8422