Elevational changes in canopy Collembola community composition are primarily driven by species turnover on Changbai Mountain, northeastern China

Forest canopies harbor extraordinary biodiversity, with Collembola being one of the most abundant arthropod taxa. However, much of the research on canopy biodiversity has focused on tropical and subtropical regions, leaving a gap in our understanding of canopy communities in temperate and boreal for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biodiversity and conservation 2023-12, Vol.32 (14), p.4853-4872
Hauptverfasser: Wu, Yunga, Xie, Zhijing, Wan, Zhuoma, Ji, Qiao-Qiao, Yang, Jingjing, Chen, Ting-Wen, Wu, Donghui, Scheu, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forest canopies harbor extraordinary biodiversity, with Collembola being one of the most abundant arthropod taxa. However, much of the research on canopy biodiversity has focused on tropical and subtropical regions, leaving a gap in our understanding of canopy communities in temperate and boreal forests. Studying canopy Collembola along elevational gradients can be particularly informative because several environmental factors change with elevation, and these changes may mirror those seen along latitudinal gradients. To better understand and conserve canopy Collembola diversity along elevational gradients, natural forests are of particular interest. In this study, we used canopy fogging to sample canopy Collembola at four elevation sites (800–1700 m a.s.l.) on Changbai Mountain, northeastern China, representing three natural forest types. We examined changes in species richness, abundance and composition of canopy Collembola, and partitioned beta diversity into nestedness and turnover to identify processes driving changes in community composition. We identified 53 morphospecies among 10,191 individuals, with Entomobryidae and Hypogastruridae being the dominant families. The highest abundance and species richness were observed at 1400 m and remained at similar levels at 1700 m, indicating an increasing pattern with elevation. Species turnover was the main driver of changes in community composition with elevation. Our results provide insights into the shift of canopy Collembola communities across an elevational gradient in temperate boreal forests.
ISSN:0960-3115
1572-9710
DOI:10.1007/s10531-023-02734-4