COGNAC: Circuit Optimization via Gradients and Noise-Aware Compilation
We present COGNAC, a novel strategy for compiling quantum circuits based on numerical optimization algorithms from scientific computing. Using a simple noise model informed by the duration of entangling gates, our gradient-based method can quickly converge to a local optimum that closely approximate...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present COGNAC, a novel strategy for compiling quantum circuits based on numerical optimization algorithms from scientific computing. Using a simple noise model informed by the duration of entangling gates, our gradient-based method can quickly converge to a local optimum that closely approximates the target unitary. By iteratively and continuously decreasing a gate's duration to zero, we reduce a circuit's gate count without the need for a large number of explicit elimination rewrite rules. We have implemented this technique as a general-purpose Qiskit compiler plugin and compared performance with state-of-the-art optimizers on a variety of standard 4-qubit benchmarks. COGNAC typically outperforms existing optimizers in reducing 2-qubit gate count, sometimes significantly. Running on a low-end laptop, our plugin takes seconds to optimize a small circuit, making it effective and accessible for a typical quantum programmer. |
---|---|
ISSN: | 2331-8422 |