On the Aldous-Caputo Spectral Gap Conjecture for Hypergraphs

In their celebrated paper (arXiv:0906.1238), Caputo, Liggett and Richthammer proved Aldous' conjecture and showed that for an arbitrary finite graph, the spectral gap of the interchange process is equal to the spectral gap of the underlying random walk. A crucial ingredient in the proof was the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Gil, Alon, Kozma, Gady, Puder, Doron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In their celebrated paper (arXiv:0906.1238), Caputo, Liggett and Richthammer proved Aldous' conjecture and showed that for an arbitrary finite graph, the spectral gap of the interchange process is equal to the spectral gap of the underlying random walk. A crucial ingredient in the proof was the Octopus Inequality - a certain inequality of operators in the group ring \(\mathbb{R}[S_n]\) of the symmetric group. Here we generalize the Octopus Inequality and apply it to generalize the Caputo-Liggett-Richthammer Theorem to certain hypergraphs, proving some cases of a conjecture of Caputo.
ISSN:2331-8422