Automatic detection of coronavirus disease (COVID-19) in X-ray images using transfer learning

In late 2019, coronavirus disease (COVID-19) began to spread globally and is highly contagious. Due to its exceptionally rapid spread and high mortality rate, it is not yet possible to be eradicated. In order to halt the spread of COVID-19, there is a pressing need for effective screening of infecte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2023-11, Vol.45 (5), p.8135-8144
Hauptverfasser: Huang, Hangxing, Ma, Lindong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In late 2019, coronavirus disease (COVID-19) began to spread globally and is highly contagious. Due to its exceptionally rapid spread and high mortality rate, it is not yet possible to be eradicated. In order to halt the spread of COVID-19, there is a pressing need for effective screening of infected patients and immediate medical intervention. The absence of rapid and accurate methods to identify infected patients has led to a need for a model for early diagnosis of patients with and suspected of having COVID-19 to reduce the probability of missed diagnosis and misdiagnosis. Modern automatic image recognition techniques are an important diagnostic method for COVID-19. The aim of this thesis is to propose a novel deep learning technique for the automatic diagnosis and recognition of coronavirus disease (COVID-19) on X-ray images using a transfer learning approach. A new dataset containing COVID-19 information was created by merging two publicly available datasets. This dataset includes 912 COVID-19 images, 4273 pneumonia images, and 1583 normal chest X-ray images. We used this dataset to train and test the deep learning algorithm. With this new dataset, two pre-trained models (Xception and ResNetRS50) were trained and validated using transfer learning techniques. 3-class images were identified (Pneumonia vs. COVID-19 vs. Normal), and the two models generated validation accuracies of 90% and 97.21%, respectively, in the experiments. This demonstrates that our proposed algorithm can be well applied in diagnosing patients with lung diseases. In this study, we found the ResNetRS50 model to be superior.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-232866