Cloud-Graph: A feature interaction graph convolutional network for remote sensing image cloud detection

Convolutional neural networks (CNNs) have made significant progress in the field of cloud detection in remote sensing images thanks to their powerful feature representation capabilities. Existing methods typically aggregate low-level features containing details and high-level features containing sem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2023-11, Vol.45 (5), p.9123-9139
Hauptverfasser: Du, Xianjun, Wu, Hailei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convolutional neural networks (CNNs) have made significant progress in the field of cloud detection in remote sensing images thanks to their powerful feature representation capabilities. Existing methods typically aggregate low-level features containing details and high-level features containing semantics to make full use of both features to accurately detect cloud regions. However, CNNs are still limited in their ability to reason about the relationships between features, while not being able to model context well. To overcome this problem, this paper designs a novel feature interaction graph convolutional network model that extends the feature fusion process of convolutional neural networks from Euclidean space to non-Euclidean space. The algorithm consists of three main components: remote sensing image feature extraction, feature interaction graph reasoning, and high-resolution feature recovery. The algorithm constructs a feature interaction graph reasoning (FIGR) module to fully interact with low-level and high-level features and then uses a residual graph convolutional network to infer feature higher-order relationships. The network model effectively alleviates the problem of a semantic divide in the feature fusion process, allowing the aggregated features to fuse valuable details and semantic information. The algorithm is designed to better detect clouds with complex cloud layers in remote sensing images with complex cloud shape, size, thickness, and cloud-snow coexistence. Validated on publicly available 38-Cloud and SPARCS datasets and the paper’s own Landsat-8 cloud detection dataset with higher spatial resolution, the proposed method achieves competitive performance under different evaluation metrics. Code is available at https://github.com/HaiLei-Fly/CloudGraph.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-223946