Real-time MRI lungs images revealing using Hybrid feedforward Deep Neural Network and Convolutional Neural Network

This research focused on Real-time MRI lung images that were revealed using three grade processes by manipulating nanophotonics components, mapping by deep learning, machine learning, and pattern recognition. This research is Solving Magnetic resonance imaging of interstitial lung diseases with Hybr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2023-11, Vol.27 (S1), p.95-114
Hauptverfasser: Karthick, M., Samuel, Dinesh Jackson, Prakash, B., Sathyaprakash, P., Daruvuri, Nandhini, Ali, Mohammed Hasan, Aiswarya, R.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research focused on Real-time MRI lung images that were revealed using three grade processes by manipulating nanophotonics components, mapping by deep learning, machine learning, and pattern recognition. This research is Solving Magnetic resonance imaging of interstitial lung diseases with Hybrid feedforward Deep Neural Network (ffDNN) and Convolutional Neural Network (CNN) architecture. The feedforward deep neural network (ffDNN) and Convolutional Neural Network (CNN) techniques are used to Solving Magnetic resonance imaging of interstitial lung diseases on the nanophotonics components, deep learning, and machine learning Platform. The Proposed semiconductor monolithic integration approach employed for bio-Magnetic resonance imaging characterization using photonic crystal “Symptomatic Image Revealing” details of the resonant monolithic. The proposed machine-learning-based approach revealed characterizing multi-parameter design space of nanophotonic components using Nano-optic imagers. The Pattern Recognition for MRI was performed for lower dimensionality. Finally, the Hybrid feedforward Deep Neural Network (ffDNN) and Convolutional Neural Network (CNN) architecture for calculating the height and size of scatterers using the inverse design of the meta-optical structure. The temporal resolution assessment of image data pixel size 280x360 hyperspectral imaging temporal resolution is 25, and magnetic resonance imaging temporal resolution is 50. The Image distribution shows that phase shift and transmission are 2.78 degrees and at 95%. The result for the inverse design using CNN returns the efficient inverse design of test data that can be designed according to the required pressure distribution. Wavelength 1000 nanometer to 1600 machine learning method absorbance 40% and ffDNN absorbance 33%.
ISSN:1088-467X
1571-4128
DOI:10.3233/IDA-237436