A generalization of Geroch's conjecture
The Theorem of Bonnet–Myers implies that manifolds with topology do not admit a metric of positive Ricci curvature, while the resolution of Geroch's conjecture implies that the torus does not admit a metric of positive scalar curvature. In this work we introduce a new notion of curvature interp...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2024-01, Vol.77 (1), p.441-456 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Theorem of Bonnet–Myers implies that manifolds with topology do not admit a metric of positive Ricci curvature, while the resolution of Geroch's conjecture implies that the torus does not admit a metric of positive scalar curvature. In this work we introduce a new notion of curvature interpolating between Ricci and scalar curvature (so‐called
m
‐intermediate curvature), and use stable weighted slicings to show that for and the manifolds do not admit a metric of positive
m
‐intermediate curvature. |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.22137 |