A generalization of Geroch's conjecture

The Theorem of Bonnet–Myers implies that manifolds with topology do not admit a metric of positive Ricci curvature, while the resolution of Geroch's conjecture implies that the torus does not admit a metric of positive scalar curvature. In this work we introduce a new notion of curvature interp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2024-01, Vol.77 (1), p.441-456
Hauptverfasser: Brendle, Simon, Hirsch, Sven, Johne, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Theorem of Bonnet–Myers implies that manifolds with topology do not admit a metric of positive Ricci curvature, while the resolution of Geroch's conjecture implies that the torus does not admit a metric of positive scalar curvature. In this work we introduce a new notion of curvature interpolating between Ricci and scalar curvature (so‐called m ‐intermediate curvature), and use stable weighted slicings to show that for and the manifolds do not admit a metric of positive m ‐intermediate curvature.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.22137