Uniform boundedness for finite Morse index solutions to supercritical semilinear elliptic equations

We consider finite Morse index solutions to semilinear elliptic questions, and we investigate their smoothness. It is well‐known that: For , there exist Morse index 1 solutions whose norm goes to infinity. For , uniform boundedness holds in the subcritical case for power‐type nonlinearities, while f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2024-01, Vol.77 (1), p.3-36
Hauptverfasser: Figalli, Alessio, Zhang, Yi Ru‐Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider finite Morse index solutions to semilinear elliptic questions, and we investigate their smoothness. It is well‐known that: For , there exist Morse index 1 solutions whose norm goes to infinity. For , uniform boundedness holds in the subcritical case for power‐type nonlinearities, while for critical nonlinearities the boundedness of the Morse index does not prevent blow‐up in . In this paper, we investigate the case of general supercritical nonlinearities inside convex domains, and we prove an interior a priori bound for finite Morse index solution in the sharp dimensional range . As a corollary, we obtain uniform bounds for finite Morse index solutions to the Gelfand problem constructed via the continuity method.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.22132