Normalized Ground States for the Schrödinger Equation with Hartree Type and Square-Root Nonlinearities
We consider the following Schrödinger equation with combined Hartree type and square-root nonlinearities - ▵ u = λ u + μ I α ∗ | u | p | u | p - 2 u + 1 - 1 1 + u 2 u , in R N , having prescribed mass ∫ R N | u | 2 = c , where N ≥ 2 and c > 0 is a given real number, λ appears as a Lagrange multip...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2023-12, Vol.20 (6), Article 330 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the following Schrödinger equation with combined Hartree type and square-root nonlinearities
-
▵
u
=
λ
u
+
μ
I
α
∗
|
u
|
p
|
u
|
p
-
2
u
+
1
-
1
1
+
u
2
u
,
in
R
N
,
having prescribed mass
∫
R
N
|
u
|
2
=
c
,
where
N
≥
2
and
c
>
0
is a given real number,
λ
appears as a Lagrange multiplier. Under the assumption of
μ
>
0
and
N
+
α
N
<
p
<
N
+
α
+
2
N
, we prove the existence of the normalized ground state by combining Concentration-compactness principle and estimate on the square-root nonlinearity. The main results extend and complement the earlier works. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-023-02538-4 |