Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry
Each year, automotive OEMs implement a variety of Engineering Changes (ECs) in their production. In the timing of ECs, different KPIs are often in conflict with one another or even unknown to the OEMs. Therefore, OEMs struggle to identify the optimal date to implement an EC. This paper presents a me...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Design Society 2022-05, Vol.2, p.343-352 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | |
container_start_page | 343 |
container_title | Proceedings of the Design Society |
container_volume | 2 |
creator | Capistrano Burgos, R. Sippl, F. Radisic-Aberger, O. Weisser, T. |
description | Each year, automotive OEMs implement a variety of Engineering Changes (ECs) in their production. In the timing of ECs, different KPIs are often in conflict with one another or even unknown to the OEMs. Therefore, OEMs struggle to identify the optimal date to implement an EC. This paper presents a method to determine the cost-optimal implementation date for each EC, considering time, cost, and quality KPIs based on a new EC classification rule-set. To evaluate the presented method, case-studies at a German automotive OEM were performed, two of which are discussed. |
doi_str_mv | 10.1017/pds.2022.36 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886570100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886570100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1436-9d0c36b191a2ab33b60180f724871b7e2832b09893c39b3cbc0deb8e376b29043</originalsourceid><addsrcrecordid>eNpNkE9LwzAYxoMoOOZOfoGAR-l8k2xJepxz6mCiBwVvIWnTrWNNapIK-_a2zoOn93nh-QM_hK4JTAkQcdeWcUqB0injZ2hEBaPZnIrP83_6Ek1i3AMA5WSeExih4kEnnd3raEv8YtPOl7jyAaedxeumPdjGuqRT7R1-O2jnarfFvsIrt62dtWF4lzvttjbi2v2mFl3yjU_1d1_gyi6mcLxCF5U-RDv5u2P08bh6Xz5nm9en9XKxyQoyYzzLSygYNyQnmmrDmOFAJFSCzqQgRlgqGTWQy5wVLDesMAWU1kjLBDc0hxkbo5tTbxv8V2djUnvfBddPKiolnwsgAL3r9uQqgo8x2Eq1oW50OCoCagCpepBqAKkYZz-TuWV9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886570100</pqid></control><display><type>article</type><title>Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry</title><source>Cambridge University Press Wholly Gold Open Access Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Capistrano Burgos, R. ; Sippl, F. ; Radisic-Aberger, O. ; Weisser, T.</creator><creatorcontrib>Capistrano Burgos, R. ; Sippl, F. ; Radisic-Aberger, O. ; Weisser, T.</creatorcontrib><description>Each year, automotive OEMs implement a variety of Engineering Changes (ECs) in their production. In the timing of ECs, different KPIs are often in conflict with one another or even unknown to the OEMs. Therefore, OEMs struggle to identify the optimal date to implement an EC. This paper presents a method to determine the cost-optimal implementation date for each EC, considering time, cost, and quality KPIs based on a new EC classification rule-set. To evaluate the presented method, case-studies at a German automotive OEM were performed, two of which are discussed.</description><identifier>ISSN: 2732-527X</identifier><identifier>EISSN: 2732-527X</identifier><identifier>DOI: 10.1017/pds.2022.36</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Automobile industry ; Costs ; Engineering ; Manufacturing ; Methods ; OEM ; Optimization ; Product development ; Software</subject><ispartof>Proceedings of the Design Society, 2022-05, Vol.2, p.343-352</ispartof><rights>The Author(s), 2022. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1436-9d0c36b191a2ab33b60180f724871b7e2832b09893c39b3cbc0deb8e376b29043</citedby><cites>FETCH-LOGICAL-c1436-9d0c36b191a2ab33b60180f724871b7e2832b09893c39b3cbc0deb8e376b29043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2886570100?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,21367,23909,23910,25118,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Capistrano Burgos, R.</creatorcontrib><creatorcontrib>Sippl, F.</creatorcontrib><creatorcontrib>Radisic-Aberger, O.</creatorcontrib><creatorcontrib>Weisser, T.</creatorcontrib><title>Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry</title><title>Proceedings of the Design Society</title><description>Each year, automotive OEMs implement a variety of Engineering Changes (ECs) in their production. In the timing of ECs, different KPIs are often in conflict with one another or even unknown to the OEMs. Therefore, OEMs struggle to identify the optimal date to implement an EC. This paper presents a method to determine the cost-optimal implementation date for each EC, considering time, cost, and quality KPIs based on a new EC classification rule-set. To evaluate the presented method, case-studies at a German automotive OEM were performed, two of which are discussed.</description><subject>Automobile industry</subject><subject>Costs</subject><subject>Engineering</subject><subject>Manufacturing</subject><subject>Methods</subject><subject>OEM</subject><subject>Optimization</subject><subject>Product development</subject><subject>Software</subject><issn>2732-527X</issn><issn>2732-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE9LwzAYxoMoOOZOfoGAR-l8k2xJepxz6mCiBwVvIWnTrWNNapIK-_a2zoOn93nh-QM_hK4JTAkQcdeWcUqB0injZ2hEBaPZnIrP83_6Ek1i3AMA5WSeExih4kEnnd3raEv8YtPOl7jyAaedxeumPdjGuqRT7R1-O2jnarfFvsIrt62dtWF4lzvttjbi2v2mFl3yjU_1d1_gyi6mcLxCF5U-RDv5u2P08bh6Xz5nm9en9XKxyQoyYzzLSygYNyQnmmrDmOFAJFSCzqQgRlgqGTWQy5wVLDesMAWU1kjLBDc0hxkbo5tTbxv8V2djUnvfBddPKiolnwsgAL3r9uQqgo8x2Eq1oW50OCoCagCpepBqAKkYZz-TuWV9</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Capistrano Burgos, R.</creator><creator>Sippl, F.</creator><creator>Radisic-Aberger, O.</creator><creator>Weisser, T.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>202205</creationdate><title>Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry</title><author>Capistrano Burgos, R. ; Sippl, F. ; Radisic-Aberger, O. ; Weisser, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1436-9d0c36b191a2ab33b60180f724871b7e2832b09893c39b3cbc0deb8e376b29043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automobile industry</topic><topic>Costs</topic><topic>Engineering</topic><topic>Manufacturing</topic><topic>Methods</topic><topic>OEM</topic><topic>Optimization</topic><topic>Product development</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Capistrano Burgos, R.</creatorcontrib><creatorcontrib>Sippl, F.</creatorcontrib><creatorcontrib>Radisic-Aberger, O.</creatorcontrib><creatorcontrib>Weisser, T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Proceedings of the Design Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capistrano Burgos, R.</au><au>Sippl, F.</au><au>Radisic-Aberger, O.</au><au>Weisser, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry</atitle><jtitle>Proceedings of the Design Society</jtitle><date>2022-05</date><risdate>2022</risdate><volume>2</volume><spage>343</spage><epage>352</epage><pages>343-352</pages><issn>2732-527X</issn><eissn>2732-527X</eissn><abstract>Each year, automotive OEMs implement a variety of Engineering Changes (ECs) in their production. In the timing of ECs, different KPIs are often in conflict with one another or even unknown to the OEMs. Therefore, OEMs struggle to identify the optimal date to implement an EC. This paper presents a method to determine the cost-optimal implementation date for each EC, considering time, cost, and quality KPIs based on a new EC classification rule-set. To evaluate the presented method, case-studies at a German automotive OEM were performed, two of which are discussed.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/pds.2022.36</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2732-527X |
ispartof | Proceedings of the Design Society, 2022-05, Vol.2, p.343-352 |
issn | 2732-527X 2732-527X |
language | eng |
recordid | cdi_proquest_journals_2886570100 |
source | Cambridge University Press Wholly Gold Open Access Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Automobile industry Costs Engineering Manufacturing Methods OEM Optimization Product development Software |
title | Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Based%20Method%20for%20the%20Implementation%20Planning%20of%20Engineering%20Changes%20in%20the%20Automotive%20Industry&rft.jtitle=Proceedings%20of%20the%20Design%20Society&rft.au=Capistrano%20Burgos,%20R.&rft.date=2022-05&rft.volume=2&rft.spage=343&rft.epage=352&rft.pages=343-352&rft.issn=2732-527X&rft.eissn=2732-527X&rft_id=info:doi/10.1017/pds.2022.36&rft_dat=%3Cproquest_cross%3E2886570100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886570100&rft_id=info:pmid/&rfr_iscdi=true |