Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry

Each year, automotive OEMs implement a variety of Engineering Changes (ECs) in their production. In the timing of ECs, different KPIs are often in conflict with one another or even unknown to the OEMs. Therefore, OEMs struggle to identify the optimal date to implement an EC. This paper presents a me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Design Society 2022-05, Vol.2, p.343-352
Hauptverfasser: Capistrano Burgos, R., Sippl, F., Radisic-Aberger, O., Weisser, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 352
container_issue
container_start_page 343
container_title Proceedings of the Design Society
container_volume 2
creator Capistrano Burgos, R.
Sippl, F.
Radisic-Aberger, O.
Weisser, T.
description Each year, automotive OEMs implement a variety of Engineering Changes (ECs) in their production. In the timing of ECs, different KPIs are often in conflict with one another or even unknown to the OEMs. Therefore, OEMs struggle to identify the optimal date to implement an EC. This paper presents a method to determine the cost-optimal implementation date for each EC, considering time, cost, and quality KPIs based on a new EC classification rule-set. To evaluate the presented method, case-studies at a German automotive OEM were performed, two of which are discussed.
doi_str_mv 10.1017/pds.2022.36
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886570100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886570100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1436-9d0c36b191a2ab33b60180f724871b7e2832b09893c39b3cbc0deb8e376b29043</originalsourceid><addsrcrecordid>eNpNkE9LwzAYxoMoOOZOfoGAR-l8k2xJepxz6mCiBwVvIWnTrWNNapIK-_a2zoOn93nh-QM_hK4JTAkQcdeWcUqB0injZ2hEBaPZnIrP83_6Ek1i3AMA5WSeExih4kEnnd3raEv8YtPOl7jyAaedxeumPdjGuqRT7R1-O2jnarfFvsIrt62dtWF4lzvttjbi2v2mFl3yjU_1d1_gyi6mcLxCF5U-RDv5u2P08bh6Xz5nm9en9XKxyQoyYzzLSygYNyQnmmrDmOFAJFSCzqQgRlgqGTWQy5wVLDesMAWU1kjLBDc0hxkbo5tTbxv8V2djUnvfBddPKiolnwsgAL3r9uQqgo8x2Eq1oW50OCoCagCpepBqAKkYZz-TuWV9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886570100</pqid></control><display><type>article</type><title>Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry</title><source>Cambridge University Press Wholly Gold Open Access Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Capistrano Burgos, R. ; Sippl, F. ; Radisic-Aberger, O. ; Weisser, T.</creator><creatorcontrib>Capistrano Burgos, R. ; Sippl, F. ; Radisic-Aberger, O. ; Weisser, T.</creatorcontrib><description>Each year, automotive OEMs implement a variety of Engineering Changes (ECs) in their production. In the timing of ECs, different KPIs are often in conflict with one another or even unknown to the OEMs. Therefore, OEMs struggle to identify the optimal date to implement an EC. This paper presents a method to determine the cost-optimal implementation date for each EC, considering time, cost, and quality KPIs based on a new EC classification rule-set. To evaluate the presented method, case-studies at a German automotive OEM were performed, two of which are discussed.</description><identifier>ISSN: 2732-527X</identifier><identifier>EISSN: 2732-527X</identifier><identifier>DOI: 10.1017/pds.2022.36</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Automobile industry ; Costs ; Engineering ; Manufacturing ; Methods ; OEM ; Optimization ; Product development ; Software</subject><ispartof>Proceedings of the Design Society, 2022-05, Vol.2, p.343-352</ispartof><rights>The Author(s), 2022. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1436-9d0c36b191a2ab33b60180f724871b7e2832b09893c39b3cbc0deb8e376b29043</citedby><cites>FETCH-LOGICAL-c1436-9d0c36b191a2ab33b60180f724871b7e2832b09893c39b3cbc0deb8e376b29043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2886570100?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,21367,23909,23910,25118,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Capistrano Burgos, R.</creatorcontrib><creatorcontrib>Sippl, F.</creatorcontrib><creatorcontrib>Radisic-Aberger, O.</creatorcontrib><creatorcontrib>Weisser, T.</creatorcontrib><title>Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry</title><title>Proceedings of the Design Society</title><description>Each year, automotive OEMs implement a variety of Engineering Changes (ECs) in their production. In the timing of ECs, different KPIs are often in conflict with one another or even unknown to the OEMs. Therefore, OEMs struggle to identify the optimal date to implement an EC. This paper presents a method to determine the cost-optimal implementation date for each EC, considering time, cost, and quality KPIs based on a new EC classification rule-set. To evaluate the presented method, case-studies at a German automotive OEM were performed, two of which are discussed.</description><subject>Automobile industry</subject><subject>Costs</subject><subject>Engineering</subject><subject>Manufacturing</subject><subject>Methods</subject><subject>OEM</subject><subject>Optimization</subject><subject>Product development</subject><subject>Software</subject><issn>2732-527X</issn><issn>2732-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE9LwzAYxoMoOOZOfoGAR-l8k2xJepxz6mCiBwVvIWnTrWNNapIK-_a2zoOn93nh-QM_hK4JTAkQcdeWcUqB0injZ2hEBaPZnIrP83_6Ek1i3AMA5WSeExih4kEnnd3raEv8YtPOl7jyAaedxeumPdjGuqRT7R1-O2jnarfFvsIrt62dtWF4lzvttjbi2v2mFl3yjU_1d1_gyi6mcLxCF5U-RDv5u2P08bh6Xz5nm9en9XKxyQoyYzzLSygYNyQnmmrDmOFAJFSCzqQgRlgqGTWQy5wVLDesMAWU1kjLBDc0hxkbo5tTbxv8V2djUnvfBddPKiolnwsgAL3r9uQqgo8x2Eq1oW50OCoCagCpepBqAKkYZz-TuWV9</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Capistrano Burgos, R.</creator><creator>Sippl, F.</creator><creator>Radisic-Aberger, O.</creator><creator>Weisser, T.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>202205</creationdate><title>Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry</title><author>Capistrano Burgos, R. ; Sippl, F. ; Radisic-Aberger, O. ; Weisser, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1436-9d0c36b191a2ab33b60180f724871b7e2832b09893c39b3cbc0deb8e376b29043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automobile industry</topic><topic>Costs</topic><topic>Engineering</topic><topic>Manufacturing</topic><topic>Methods</topic><topic>OEM</topic><topic>Optimization</topic><topic>Product development</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Capistrano Burgos, R.</creatorcontrib><creatorcontrib>Sippl, F.</creatorcontrib><creatorcontrib>Radisic-Aberger, O.</creatorcontrib><creatorcontrib>Weisser, T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Proceedings of the Design Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capistrano Burgos, R.</au><au>Sippl, F.</au><au>Radisic-Aberger, O.</au><au>Weisser, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry</atitle><jtitle>Proceedings of the Design Society</jtitle><date>2022-05</date><risdate>2022</risdate><volume>2</volume><spage>343</spage><epage>352</epage><pages>343-352</pages><issn>2732-527X</issn><eissn>2732-527X</eissn><abstract>Each year, automotive OEMs implement a variety of Engineering Changes (ECs) in their production. In the timing of ECs, different KPIs are often in conflict with one another or even unknown to the OEMs. Therefore, OEMs struggle to identify the optimal date to implement an EC. This paper presents a method to determine the cost-optimal implementation date for each EC, considering time, cost, and quality KPIs based on a new EC classification rule-set. To evaluate the presented method, case-studies at a German automotive OEM were performed, two of which are discussed.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/pds.2022.36</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2732-527X
ispartof Proceedings of the Design Society, 2022-05, Vol.2, p.343-352
issn 2732-527X
2732-527X
language eng
recordid cdi_proquest_journals_2886570100
source Cambridge University Press Wholly Gold Open Access Journals; Alma/SFX Local Collection; ProQuest Central
subjects Automobile industry
Costs
Engineering
Manufacturing
Methods
OEM
Optimization
Product development
Software
title Data-Based Method for the Implementation Planning of Engineering Changes in the Automotive Industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Based%20Method%20for%20the%20Implementation%20Planning%20of%20Engineering%20Changes%20in%20the%20Automotive%20Industry&rft.jtitle=Proceedings%20of%20the%20Design%20Society&rft.au=Capistrano%20Burgos,%20R.&rft.date=2022-05&rft.volume=2&rft.spage=343&rft.epage=352&rft.pages=343-352&rft.issn=2732-527X&rft.eissn=2732-527X&rft_id=info:doi/10.1017/pds.2022.36&rft_dat=%3Cproquest_cross%3E2886570100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886570100&rft_id=info:pmid/&rfr_iscdi=true