(K_{1,2,2,2}\) has no \(n\)-fold planar cover graph for \(n<14\)

S. Negami conjectured in \(1988\) that a connected graph has a finite planar cover if and only if it embeds in the projective plane. It follows from the works of D. Archdeacon, M. Fellows, P. Hliněn\'{y}, and S. Negami that this conjecture is true if the graph \(K_{1, 2, 2, 2}\) has no finite p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Dickson Y B Annor, Nikolayevsky, Yuri, Payne, Michael S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dickson Y B Annor
Nikolayevsky, Yuri
Payne, Michael S
description S. Negami conjectured in \(1988\) that a connected graph has a finite planar cover if and only if it embeds in the projective plane. It follows from the works of D. Archdeacon, M. Fellows, P. Hliněn\'{y}, and S. Negami that this conjecture is true if the graph \(K_{1, 2, 2, 2}\) has no finite planar cover. We prove a number of structural results about putative finite planar covers of \(K_{1,2,2,2}\) that may be of independent interest. We then apply these results to prove that \(K_{1, 2, 2, 2}\) has no planar cover of fold number less than \(14\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886464263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886464263</sourcerecordid><originalsourceid>FETCH-proquest_journals_28864642633</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw0PCOrzbUMQLB2hhNhYzEYoW8fIUYjbwYTd20_JwUhYKcxLzEIoXk_LLUIoX0osSCDIW0_CKQChtDkxhNHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKN7KwMDMxMzEyMzYmThUAQFE1MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886464263</pqid></control><display><type>article</type><title>(K_{1,2,2,2}\) has no \(n\)-fold planar cover graph for \(n&lt;14\)</title><source>Free E- Journals</source><creator>Dickson Y B Annor ; Nikolayevsky, Yuri ; Payne, Michael S</creator><creatorcontrib>Dickson Y B Annor ; Nikolayevsky, Yuri ; Payne, Michael S</creatorcontrib><description>S. Negami conjectured in \(1988\) that a connected graph has a finite planar cover if and only if it embeds in the projective plane. It follows from the works of D. Archdeacon, M. Fellows, P. Hliněn\'{y}, and S. Negami that this conjecture is true if the graph \(K_{1, 2, 2, 2}\) has no finite planar cover. We prove a number of structural results about putative finite planar covers of \(K_{1,2,2,2}\) that may be of independent interest. We then apply these results to prove that \(K_{1, 2, 2, 2}\) has no planar cover of fold number less than \(14\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dickson Y B Annor</creatorcontrib><creatorcontrib>Nikolayevsky, Yuri</creatorcontrib><creatorcontrib>Payne, Michael S</creatorcontrib><title>(K_{1,2,2,2}\) has no \(n\)-fold planar cover graph for \(n&lt;14\)</title><title>arXiv.org</title><description>S. Negami conjectured in \(1988\) that a connected graph has a finite planar cover if and only if it embeds in the projective plane. It follows from the works of D. Archdeacon, M. Fellows, P. Hliněn\'{y}, and S. Negami that this conjecture is true if the graph \(K_{1, 2, 2, 2}\) has no finite planar cover. We prove a number of structural results about putative finite planar covers of \(K_{1,2,2,2}\) that may be of independent interest. We then apply these results to prove that \(K_{1, 2, 2, 2}\) has no planar cover of fold number less than \(14\).</description><subject>Apexes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw0PCOrzbUMQLB2hhNhYzEYoW8fIUYjbwYTd20_JwUhYKcxLzEIoXk_LLUIoX0osSCDIW0_CKQChtDkxhNHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKN7KwMDMxMzEyMzYmThUAQFE1MQ</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Dickson Y B Annor</creator><creator>Nikolayevsky, Yuri</creator><creator>Payne, Michael S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240910</creationdate><title>(K_{1,2,2,2}\) has no \(n\)-fold planar cover graph for \(n&lt;14\)</title><author>Dickson Y B Annor ; Nikolayevsky, Yuri ; Payne, Michael S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28864642633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><toplevel>online_resources</toplevel><creatorcontrib>Dickson Y B Annor</creatorcontrib><creatorcontrib>Nikolayevsky, Yuri</creatorcontrib><creatorcontrib>Payne, Michael S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dickson Y B Annor</au><au>Nikolayevsky, Yuri</au><au>Payne, Michael S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(K_{1,2,2,2}\) has no \(n\)-fold planar cover graph for \(n&lt;14\)</atitle><jtitle>arXiv.org</jtitle><date>2024-09-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>S. Negami conjectured in \(1988\) that a connected graph has a finite planar cover if and only if it embeds in the projective plane. It follows from the works of D. Archdeacon, M. Fellows, P. Hliněn\'{y}, and S. Negami that this conjecture is true if the graph \(K_{1, 2, 2, 2}\) has no finite planar cover. We prove a number of structural results about putative finite planar covers of \(K_{1,2,2,2}\) that may be of independent interest. We then apply these results to prove that \(K_{1, 2, 2, 2}\) has no planar cover of fold number less than \(14\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2886464263
source Free E- Journals
subjects Apexes
title (K_{1,2,2,2}\) has no \(n\)-fold planar cover graph for \(n<14\)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(K_%7B1,2,2,2%7D%5C)%20has%20no%20%5C(n%5C)-fold%20planar%20cover%20graph%20for%20%5C(n%3C14%5C)&rft.jtitle=arXiv.org&rft.au=Dickson%20Y%20B%20Annor&rft.date=2024-09-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886464263%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886464263&rft_id=info:pmid/&rfr_iscdi=true