(K_{1,2,2,2}\) has no \(n\)-fold planar cover graph for \(n<14\)
S. Negami conjectured in \(1988\) that a connected graph has a finite planar cover if and only if it embeds in the projective plane. It follows from the works of D. Archdeacon, M. Fellows, P. Hliněn\'{y}, and S. Negami that this conjecture is true if the graph \(K_{1, 2, 2, 2}\) has no finite p...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | S. Negami conjectured in \(1988\) that a connected graph has a finite planar cover if and only if it embeds in the projective plane. It follows from the works of D. Archdeacon, M. Fellows, P. Hliněn\'{y}, and S. Negami that this conjecture is true if the graph \(K_{1, 2, 2, 2}\) has no finite planar cover. We prove a number of structural results about putative finite planar covers of \(K_{1,2,2,2}\) that may be of independent interest. We then apply these results to prove that \(K_{1, 2, 2, 2}\) has no planar cover of fold number less than \(14\). |
---|---|
ISSN: | 2331-8422 |