An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints

We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through nume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Mitchell Tong Harris, Pierre-David Letourneau, Jones, Dalton, M Harper Langston
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mitchell Tong Harris
Pierre-David Letourneau
Jones, Dalton
M Harper Langston
description We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through numerical experiments on previously intractable global constrained polynomial optimization problems in high dimension, we show that polynomial scaling in dimension and degree is achievable when computing the optimal value and location.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886464133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886464133</sourcerecordid><originalsourceid>FETCH-proquest_journals_28864641333</originalsourceid><addsrcrecordid>eNqNir0OgjAURhsTE43yDjdxJsEWkJUQ0Ukd3Ek1RYvlXmyLf08vgw_gdL6c74zYlAuxDLOY8wkLnGuiKOLpiieJmLIqR1jXtT5rhR5KK1v1JHuDmixsDJ2kgR1hWBA-1AsOZN5IrR7svvO61R_pNSE8tb9Cbi7qZKU-w1A7Pyz0bs7GtTROBT_O2KJcH4tt2Fm698r5qqHe4nBVPMvSOI2XQoj_qi-erUTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886464133</pqid></control><display><type>article</type><title>An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints</title><source>Free E- Journals</source><creator>Mitchell Tong Harris ; Pierre-David Letourneau ; Jones, Dalton ; M Harper Langston</creator><creatorcontrib>Mitchell Tong Harris ; Pierre-David Letourneau ; Jones, Dalton ; M Harper Langston</creatorcontrib><description>We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through numerical experiments on previously intractable global constrained polynomial optimization problems in high dimension, we show that polynomial scaling in dimension and degree is achievable when computing the optimal value and location.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Constraints ; Optimization ; Polynomials</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mitchell Tong Harris</creatorcontrib><creatorcontrib>Pierre-David Letourneau</creatorcontrib><creatorcontrib>Jones, Dalton</creatorcontrib><creatorcontrib>M Harper Langston</creatorcontrib><title>An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints</title><title>arXiv.org</title><description>We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through numerical experiments on previously intractable global constrained polynomial optimization problems in high dimension, we show that polynomial scaling in dimension and degree is achievable when computing the optimal value and location.</description><subject>Constraints</subject><subject>Optimization</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0OgjAURhsTE43yDjdxJsEWkJUQ0Ukd3Ek1RYvlXmyLf08vgw_gdL6c74zYlAuxDLOY8wkLnGuiKOLpiieJmLIqR1jXtT5rhR5KK1v1JHuDmixsDJ2kgR1hWBA-1AsOZN5IrR7svvO61R_pNSE8tb9Cbi7qZKU-w1A7Pyz0bs7GtTROBT_O2KJcH4tt2Fm698r5qqHe4nBVPMvSOI2XQoj_qi-erUTE</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Mitchell Tong Harris</creator><creator>Pierre-David Letourneau</creator><creator>Jones, Dalton</creator><creator>M Harper Langston</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240904</creationdate><title>An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints</title><author>Mitchell Tong Harris ; Pierre-David Letourneau ; Jones, Dalton ; M Harper Langston</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28864641333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constraints</topic><topic>Optimization</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Mitchell Tong Harris</creatorcontrib><creatorcontrib>Pierre-David Letourneau</creatorcontrib><creatorcontrib>Jones, Dalton</creatorcontrib><creatorcontrib>M Harper Langston</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchell Tong Harris</au><au>Pierre-David Letourneau</au><au>Jones, Dalton</au><au>M Harper Langston</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints</atitle><jtitle>arXiv.org</jtitle><date>2024-09-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through numerical experiments on previously intractable global constrained polynomial optimization problems in high dimension, we show that polynomial scaling in dimension and degree is achievable when computing the optimal value and location.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2886464133
source Free E- Journals
subjects Constraints
Optimization
Polynomials
title An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Efficient%20Framework%20for%20Global%20Non-Convex%20Polynomial%20Optimization%20with%20Algebraic%20Constraints&rft.jtitle=arXiv.org&rft.au=Mitchell%20Tong%20Harris&rft.date=2024-09-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886464133%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886464133&rft_id=info:pmid/&rfr_iscdi=true