An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints
We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through nume...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mitchell Tong Harris Pierre-David Letourneau Jones, Dalton M Harper Langston |
description | We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through numerical experiments on previously intractable global constrained polynomial optimization problems in high dimension, we show that polynomial scaling in dimension and degree is achievable when computing the optimal value and location. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886464133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886464133</sourcerecordid><originalsourceid>FETCH-proquest_journals_28864641333</originalsourceid><addsrcrecordid>eNqNir0OgjAURhsTE43yDjdxJsEWkJUQ0Ukd3Ek1RYvlXmyLf08vgw_gdL6c74zYlAuxDLOY8wkLnGuiKOLpiieJmLIqR1jXtT5rhR5KK1v1JHuDmixsDJ2kgR1hWBA-1AsOZN5IrR7svvO61R_pNSE8tb9Cbi7qZKU-w1A7Pyz0bs7GtTROBT_O2KJcH4tt2Fm698r5qqHe4nBVPMvSOI2XQoj_qi-erUTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886464133</pqid></control><display><type>article</type><title>An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints</title><source>Free E- Journals</source><creator>Mitchell Tong Harris ; Pierre-David Letourneau ; Jones, Dalton ; M Harper Langston</creator><creatorcontrib>Mitchell Tong Harris ; Pierre-David Letourneau ; Jones, Dalton ; M Harper Langston</creatorcontrib><description>We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through numerical experiments on previously intractable global constrained polynomial optimization problems in high dimension, we show that polynomial scaling in dimension and degree is achievable when computing the optimal value and location.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Constraints ; Optimization ; Polynomials</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mitchell Tong Harris</creatorcontrib><creatorcontrib>Pierre-David Letourneau</creatorcontrib><creatorcontrib>Jones, Dalton</creatorcontrib><creatorcontrib>M Harper Langston</creatorcontrib><title>An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints</title><title>arXiv.org</title><description>We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through numerical experiments on previously intractable global constrained polynomial optimization problems in high dimension, we show that polynomial scaling in dimension and degree is achievable when computing the optimal value and location.</description><subject>Constraints</subject><subject>Optimization</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0OgjAURhsTE43yDjdxJsEWkJUQ0Ukd3Ek1RYvlXmyLf08vgw_gdL6c74zYlAuxDLOY8wkLnGuiKOLpiieJmLIqR1jXtT5rhR5KK1v1JHuDmixsDJ2kgR1hWBA-1AsOZN5IrR7svvO61R_pNSE8tb9Cbi7qZKU-w1A7Pyz0bs7GtTROBT_O2KJcH4tt2Fm698r5qqHe4nBVPMvSOI2XQoj_qi-erUTE</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Mitchell Tong Harris</creator><creator>Pierre-David Letourneau</creator><creator>Jones, Dalton</creator><creator>M Harper Langston</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240904</creationdate><title>An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints</title><author>Mitchell Tong Harris ; Pierre-David Letourneau ; Jones, Dalton ; M Harper Langston</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28864641333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constraints</topic><topic>Optimization</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Mitchell Tong Harris</creatorcontrib><creatorcontrib>Pierre-David Letourneau</creatorcontrib><creatorcontrib>Jones, Dalton</creatorcontrib><creatorcontrib>M Harper Langston</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchell Tong Harris</au><au>Pierre-David Letourneau</au><au>Jones, Dalton</au><au>M Harper Langston</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints</atitle><jtitle>arXiv.org</jtitle><date>2024-09-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through numerical experiments on previously intractable global constrained polynomial optimization problems in high dimension, we show that polynomial scaling in dimension and degree is achievable when computing the optimal value and location.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2886464133 |
source | Free E- Journals |
subjects | Constraints Optimization Polynomials |
title | An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Efficient%20Framework%20for%20Global%20Non-Convex%20Polynomial%20Optimization%20with%20Algebraic%20Constraints&rft.jtitle=arXiv.org&rft.au=Mitchell%20Tong%20Harris&rft.date=2024-09-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886464133%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886464133&rft_id=info:pmid/&rfr_iscdi=true |