An Efficient Framework for Global Non-Convex Polynomial Optimization with Algebraic Constraints

We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through nume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Mitchell Tong Harris, Pierre-David Letourneau, Jones, Dalton, M Harper Langston
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an efficient framework for solving algebraically-constrained global non-convex polynomial optimization problems over subsets of the hypercube. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. Through numerical experiments on previously intractable global constrained polynomial optimization problems in high dimension, we show that polynomial scaling in dimension and degree is achievable when computing the optimal value and location.
ISSN:2331-8422