A panel clustering approach to analyzing bubble behavior

This study provides new mechanisms for identifying and estimating explosive bubbles in mixed‐root panel autoregressions with a latent group structure. A postclustering approach is employed that combines k ‐means clustering with right‐tailed panel‐data testing. Uniform consistency of the k ‐means alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International economic review (Philadelphia) 2023-11, Vol.64 (4), p.1347-1395
1. Verfasser: Liu, Yanbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study provides new mechanisms for identifying and estimating explosive bubbles in mixed‐root panel autoregressions with a latent group structure. A postclustering approach is employed that combines k ‐means clustering with right‐tailed panel‐data testing. Uniform consistency of the k ‐means algorithm is established. Pivotal null limit distributions of the tests are introduced. A new method is proposed to consistently estimate the number of groups. Monte Carlo simulations show that the proposed methods perform well in finite samples; and empirical applications of the proposed methods identify bubbles in the U.S. and Chinese housing markets and the U.S. stock market.
ISSN:0020-6598
1468-2354
DOI:10.1111/iere.12647