Automated Mesiodens Detection with Deep-Learning-Based System Using Cone-Beam Computed Tomography Images

The detection of mesiodens supernumerary teeth is crucial for appropriate diagnosis and treatment. The study aimed to develop a convolutional neural network (CNN)-based model to automatically detect mesiodens in cone-beam computed tomography images. A datatest of anonymized 851 axial slices of 106 p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2023-10, Vol.2023, p.1-8
Hauptverfasser: Syed, Ali Zakir, Çelik Ozen, Duygu, Abdelkarim, Ahmed Z., Duman, Şuayip Burak, Bayrakdar, İbrahim Şevki, Duman, Sacide, Celik, Özer, Orhan, Kaan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detection of mesiodens supernumerary teeth is crucial for appropriate diagnosis and treatment. The study aimed to develop a convolutional neural network (CNN)-based model to automatically detect mesiodens in cone-beam computed tomography images. A datatest of anonymized 851 axial slices of 106 patients’ cone-beam images was used to process the artificial intelligence system for the detection and segmentation of mesiodens. The CNN model achieved high performance in mesiodens segmentation with sensitivity, precision, and F1 scores of 1, 0.9072, and 0.9513, respectively. The area under the curve (AUC) was 0.9147, indicating the model’s robustness. The proposed model showed promising potential for the automated detection of mesiodens, providing valuable assistance to dentists in accurate diagnosis.
ISSN:0884-8173
1098-111X
DOI:10.1155/2023/4415970