A class of constacyclic codes are generalized Reed–Solomon codes

Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for a given length and code size. The most prominent MDS codes are generalized Reed–Solomon (GRS) codes. The square C 2 of a linear code C is the linear code spanned by the component-wise pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2023-12, Vol.91 (12), p.4143-4151
Hauptverfasser: Liu, Hongwei, Liu, Shengwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for a given length and code size. The most prominent MDS codes are generalized Reed–Solomon (GRS) codes. The square C 2 of a linear code C is the linear code spanned by the component-wise products of every pair of codewords in C . For an MDS code C , it is convenient to determine whether C is a GRS code by determining the dimension of C 2 . In this paper, we investigate under what conditions that MDS constacyclic codes are GRS. For this purpose, we first study the square of constacyclic codes. Then, we give a sufficient condition that a constacyclic code is GRS. In particular, we provide a necessary and sufficient condition that a constacyclic code of a prime length is GRS.
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-023-01294-6