A class of constacyclic codes are generalized Reed–Solomon codes
Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for a given length and code size. The most prominent MDS codes are generalized Reed–Solomon (GRS) codes. The square C 2 of a linear code C is the linear code spanned by the component-wise pro...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2023-12, Vol.91 (12), p.4143-4151 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for a given length and code size. The most prominent MDS codes are generalized Reed–Solomon (GRS) codes. The square
C
2
of a linear code
C
is the linear code spanned by the component-wise products of every pair of codewords in
C
. For an MDS code
C
, it is convenient to determine whether
C
is a GRS code by determining the dimension of
C
2
. In this paper, we investigate under what conditions that MDS constacyclic codes are GRS. For this purpose, we first study the square of constacyclic codes. Then, we give a sufficient condition that a constacyclic code is GRS. In particular, we provide a necessary and sufficient condition that a constacyclic code of a prime length is GRS. |
---|---|
ISSN: | 0925-1022 1573-7586 |
DOI: | 10.1007/s10623-023-01294-6 |