A generalization of p-convexity and q-concavity on Banach lattices
In this paper, considering a real Banach sequence lattice Y instead of a Lebesgue sequence space \(l_p\) we generalize p-convexity of a linear operator \(T:E\to X\), where E is a Banach space and X is a Banach lattice. Then we prove that basic properties of p-convexity remain valid for Y-convex line...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, considering a real Banach sequence lattice Y instead of a Lebesgue sequence space \(l_p\) we generalize p-convexity of a linear operator \(T:E\to X\), where E is a Banach space and X is a Banach lattice. Then we prove that basic properties of p-convexity remain valid for Y-convex linear operators. Analogous generalizations are given for q-concavity and p-summability and composition properties between these operators are analyzed. |
---|---|
ISSN: | 2331-8422 |