A generalization of p-convexity and q-concavity on Banach lattices

In this paper, considering a real Banach sequence lattice Y instead of a Lebesgue sequence space \(l_p\) we generalize p-convexity of a linear operator \(T:E\to X\), where E is a Banach space and X is a Banach lattice. Then we prove that basic properties of p-convexity remain valid for Y-convex line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Galaz-Fontes, Fernando, Hernández-Barradas, José Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, considering a real Banach sequence lattice Y instead of a Lebesgue sequence space \(l_p\) we generalize p-convexity of a linear operator \(T:E\to X\), where E is a Banach space and X is a Banach lattice. Then we prove that basic properties of p-convexity remain valid for Y-convex linear operators. Analogous generalizations are given for q-concavity and p-summability and composition properties between these operators are analyzed.
ISSN:2331-8422