Tensor train completion: Local recovery guarantees via Riemannian optimization
In this work, we estimate the number of randomly selected elements of a tensor that with high probability guarantees local convergence of Riemannian gradient descent for tensor train completion. We derive a new bound for the orthogonal projections onto the tangent spaces based on the harmonic mean o...
Gespeichert in:
Veröffentlicht in: | Numerical linear algebra with applications 2023-12, Vol.30 (6) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we estimate the number of randomly selected elements of a tensor that with high probability guarantees local convergence of Riemannian gradient descent for tensor train completion. We derive a new bound for the orthogonal projections onto the tangent spaces based on the harmonic mean of the unfoldings' singular values and introduce a notion of core coherence for tensor trains. We also extend the results to tensor train completion with auxiliary subspace information and obtain the corresponding local convergence guarantees. |
---|---|
ISSN: | 1070-5325 1099-1506 |
DOI: | 10.1002/nla.2520 |