Tensor train completion: Local recovery guarantees via Riemannian optimization

In this work, we estimate the number of randomly selected elements of a tensor that with high probability guarantees local convergence of Riemannian gradient descent for tensor train completion. We derive a new bound for the orthogonal projections onto the tangent spaces based on the harmonic mean o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2023-12, Vol.30 (6)
Hauptverfasser: Budzinskiy, Stanislav, Zamarashkin, Nikolai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we estimate the number of randomly selected elements of a tensor that with high probability guarantees local convergence of Riemannian gradient descent for tensor train completion. We derive a new bound for the orthogonal projections onto the tangent spaces based on the harmonic mean of the unfoldings' singular values and introduce a notion of core coherence for tensor trains. We also extend the results to tensor train completion with auxiliary subspace information and obtain the corresponding local convergence guarantees.
ISSN:1070-5325
1099-1506
DOI:10.1002/nla.2520