Theoretical study of the saturation and nature of the hydrogen bonds to gold
Traditional hydrogen bonds are well-known to exhibit directionality and saturation. By contrast, gold involved hydrogen bonds (GHBs) have been extensively studied but remain lack of in-depth understanding towards the intrinsic nature and saturation property. This work exemplifies three series of com...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-11, Vol.159 (17) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional hydrogen bonds are well-known to exhibit directionality and saturation. By contrast, gold involved hydrogen bonds (GHBs) have been extensively studied but remain lack of in-depth understanding towards the intrinsic nature and saturation property. This work exemplifies three series of complexes: [L–Au–L]−⋯(HF)n (L = H, CH3, (CH3)3; n = 1–8) containing GHBs to dig into the intrinsic nature with the aid of multiple theoretical analysis methods, finding that the formation of GHB is highly subject to orbital interactions along with steric hindrance. Moreover, the saturation level of GHBs largely depends on the ligand attached to the gold center, since different ligands typically possess varying electron-giving ability and steric volume. This work confirms the coexistence of as many as 6 GHBs for one Au atom and thoroughly studies the saturation level of GHBs, which will provide new insights into GHBs and facilitate future synthesis of more complicated gold complexes. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0171292 |