Normalized Ground State Solutions for Critical Growth Schrödinger Equations
This paper investigates the existence of solutions with a prescribed L 2 -norm for the nonlinear Sobolev critical Schrödinger equation: - Δ u + λ u = g ( u ) + | u | 2 ∗ - 2 u , in R N , ∫ R N | u | 2 d x = a , u ∈ H 1 ( R N ) , where N ≥ 3 , a > 0 , 2 ∗ = 2 N N - 2 denotes the critical Sobolev e...
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2024-02, Vol.23 (1), Article 38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates the existence of solutions with a prescribed
L
2
-norm for the nonlinear Sobolev critical Schrödinger equation:
-
Δ
u
+
λ
u
=
g
(
u
)
+
|
u
|
2
∗
-
2
u
,
in
R
N
,
∫
R
N
|
u
|
2
d
x
=
a
,
u
∈
H
1
(
R
N
)
,
where
N
≥
3
,
a
>
0
,
2
∗
=
2
N
N
-
2
denotes the critical Sobolev exponent,
g
belongs to the continuous function space
C
(
R
)
, and the parameter
λ
serving as a Lagrange multiplier. We employ the Sobolev subcritical approximation method to establish the existence of normalized ground state solutions for this particular class of Schrödinger equations with critical growth. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-023-00893-x |