Normalized Ground State Solutions for Critical Growth Schrödinger Equations

This paper investigates the existence of solutions with a prescribed L 2 -norm for the nonlinear Sobolev critical Schrödinger equation: - Δ u + λ u = g ( u ) + | u | 2 ∗ - 2 u , in R N , ∫ R N | u | 2 d x = a , u ∈ H 1 ( R N ) , where N ≥ 3 , a > 0 , 2 ∗ = 2 N N - 2 denotes the critical Sobolev e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2024-02, Vol.23 (1), Article 38
Hauptverfasser: Fan, Song, Li, Gui-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the existence of solutions with a prescribed L 2 -norm for the nonlinear Sobolev critical Schrödinger equation: - Δ u + λ u = g ( u ) + | u | 2 ∗ - 2 u , in R N , ∫ R N | u | 2 d x = a , u ∈ H 1 ( R N ) , where N ≥ 3 , a > 0 , 2 ∗ = 2 N N - 2 denotes the critical Sobolev exponent, g belongs to the continuous function space C ( R ) , and the parameter λ serving as a Lagrange multiplier. We employ the Sobolev subcritical approximation method to establish the existence of normalized ground state solutions for this particular class of Schrödinger equations with critical growth.
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-023-00893-x