Decentralised, Scalable and Privacy-Preserving Synthetic Data Generation

Synthetic data is emerging as a promising way to harness the value of data, while reducing privacy risks. The potential of synthetic data is not limited to privacy-friendly data release, but also includes complementing real data in use-cases such as training machine learning algorithms that are more...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Ramesh, Vishal, Zhao, Rui, Goel, Naman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthetic data is emerging as a promising way to harness the value of data, while reducing privacy risks. The potential of synthetic data is not limited to privacy-friendly data release, but also includes complementing real data in use-cases such as training machine learning algorithms that are more fair and robust to distribution shifts etc. There is a lot of interest in algorithmic advances in synthetic data generation for providing better privacy and statistical guarantees and for its better utilisation in machine learning pipelines. However, for responsible and trustworthy synthetic data generation, it is not sufficient to focus only on these algorithmic aspects and instead, a holistic view of the synthetic data generation pipeline must be considered. We build a novel system that allows the contributors of real data to autonomously participate in differentially private synthetic data generation without relying on a trusted centre. Our modular, general and scalable solution is based on three building blocks namely: Solid (Social Linked Data), MPC (Secure Multi-Party Computation) and Trusted Execution Environments (TEEs). Solid is a specification that lets people store their data securely in decentralised data stores called Pods and control access to their data. MPC refers to the set of cryptographic methods for different parties to jointly compute a function over their inputs while keeping those inputs private. TEEs such as Intel SGX rely on hardware based features for confidentiality and integrity of code and data. We show how these three technologies can be effectively used to address various challenges in responsible and trustworthy synthetic data generation by ensuring: 1) contributor autonomy, 2) decentralisation, 3) privacy and 4) scalability. We support our claims with rigorous empirical results on simulated and real datasets and different synthetic data generation algorithms.
ISSN:2331-8422