On the Difference Independence of the Euler Gamma Function and the Riemann Zeta Function
We prove that the Riemann zeta function ζ and the Euler gamma function Γ cannot satisfy a class of non-trivial algebraic difference equations with functional coefficients that are connected to the zeros of the Riemann zeta function ζ on the critical line L = { z ∈ C : Re ( z ) = 1 / 2 } . The main r...
Gespeichert in:
Veröffentlicht in: | Computational methods and function theory 2023-12, Vol.23 (4), p.771-788 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the Riemann zeta function
ζ
and the Euler gamma function
Γ
cannot satisfy a class of non-trivial algebraic difference equations with functional coefficients that are connected to the zeros of the Riemann zeta function
ζ
on the critical line
L
=
{
z
∈
C
:
Re
(
z
)
=
1
/
2
}
. The main result of this paper is the difference analogue of the corresponding result from Li–Ye (J. Differential Equations 260(2):1456–1464, 2016), and improves the corresponding result from Chiang–Feng (Acta Arith. 125(4):317–329, 2006). Examples are provided to show that the main results in this paper, in a sense, are best possible. |
---|---|
ISSN: | 1617-9447 2195-3724 |
DOI: | 10.1007/s40315-023-00483-7 |