On the Difference Independence of the Euler Gamma Function and the Riemann Zeta Function

We prove that the Riemann zeta function ζ and the Euler gamma function Γ cannot satisfy a class of non-trivial algebraic difference equations with functional coefficients that are connected to the zeros of the Riemann zeta function ζ on the critical line L = { z ∈ C : Re ( z ) = 1 / 2 } . The main r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory 2023-12, Vol.23 (4), p.771-788
Hauptverfasser: Bibi, Amina, Li, Xiao-Min, Yi, Hong-Xun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the Riemann zeta function ζ and the Euler gamma function Γ cannot satisfy a class of non-trivial algebraic difference equations with functional coefficients that are connected to the zeros of the Riemann zeta function ζ on the critical line L = { z ∈ C : Re ( z ) = 1 / 2 } . The main result of this paper is the difference analogue of the corresponding result from Li–Ye (J. Differential Equations 260(2):1456–1464, 2016), and improves the corresponding result from Chiang–Feng (Acta Arith. 125(4):317–329, 2006). Examples are provided to show that the main results in this paper, in a sense, are best possible.
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-023-00483-7