Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces
We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ 2 ∩ ∇...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-10, Vol.276 (1), p.98-110 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 1 |
container_start_page | 98 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 276 |
creator | Kopylov, Ya. A. |
description | We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ
2
∩ ∇
2
-regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support. |
doi_str_mv | 10.1007/s10958-023-06727-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2884700197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A773544861</galeid><sourcerecordid>A773544861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3680-595818576daedcf39b2469a482b30e6dca73f0d6cfaa9e728353303fbac7069b3</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhpfSQNMkf6AnQU89yJ1d7UraY3CdJhBqiJOzmNVKrsLuypXk4PTXR4kLwWCKDjMMz6Ovtyi-lDArAcT3WELbSAoVo8BFJSh8KE7LRjAqRdt8zD2IijIm6k_F5xgfIUtcstNi9cuHEQeCU0_mftygTmTlhyfs3ODSM_GWpN-GLHbJBOcD-ZHLEybnJ7LcmIApz1zuw-D0X7LKvonnxYnFIZqLf_WseLha3M-v6e3y58388pZqxiXQJt-4lI3gPZpeW9Z2Vc1brGXVMTC81yiYhZ5ri9gaUUnWMAbMdqgF8LZjZ8XX_b6b4P9sTUzq0W_DlI9UlZS1AChb8U6tcTDKTdangHp0UatLIVhT15KXmaJHqLWZ8hsHPxnr8viAnx3h8-rN6PRR4duBkJlkdmmN2xjVzerukK32rA4-xmCs2gQ3YnhWJajXvNU-b5XzVm95K8gS20sxw9PahPff-I_1Anjaqmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884700197</pqid></control><display><type>article</type><title>Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Kopylov, Ya. A.</creator><creatorcontrib>Kopylov, Ya. A.</creatorcontrib><description>We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ
2
∩ ∇
2
-regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06727-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Derivation ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Orlicz space ; Riemann manifold</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-10, Vol.276 (1), p.98-110</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3680-595818576daedcf39b2469a482b30e6dca73f0d6cfaa9e728353303fbac7069b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-023-06727-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-023-06727-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kopylov, Ya. A.</creatorcontrib><title>Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ
2
∩ ∇
2
-regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support.</description><subject>Derivation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Orlicz space</subject><subject>Riemann manifold</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rGzEQhpfSQNMkf6AnQU89yJ1d7UraY3CdJhBqiJOzmNVKrsLuypXk4PTXR4kLwWCKDjMMz6Ovtyi-lDArAcT3WELbSAoVo8BFJSh8KE7LRjAqRdt8zD2IijIm6k_F5xgfIUtcstNi9cuHEQeCU0_mftygTmTlhyfs3ODSM_GWpN-GLHbJBOcD-ZHLEybnJ7LcmIApz1zuw-D0X7LKvonnxYnFIZqLf_WseLha3M-v6e3y58388pZqxiXQJt-4lI3gPZpeW9Z2Vc1brGXVMTC81yiYhZ5ri9gaUUnWMAbMdqgF8LZjZ8XX_b6b4P9sTUzq0W_DlI9UlZS1AChb8U6tcTDKTdangHp0UatLIVhT15KXmaJHqLWZ8hsHPxnr8viAnx3h8-rN6PRR4duBkJlkdmmN2xjVzerukK32rA4-xmCs2gQ3YnhWJajXvNU-b5XzVm95K8gS20sxw9PahPff-I_1Anjaqmc</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Kopylov, Ya. A.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20231004</creationdate><title>Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces</title><author>Kopylov, Ya. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3680-595818576daedcf39b2469a482b30e6dca73f0d6cfaa9e728353303fbac7069b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Derivation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Orlicz space</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopylov, Ya. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopylov, Ya. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-10-04</date><risdate>2023</risdate><volume>276</volume><issue>1</issue><spage>98</spage><epage>110</epage><pages>98-110</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ
2
∩ ∇
2
-regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06727-0</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2023-10, Vol.276 (1), p.98-110 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2884700197 |
source | Springer Nature - Complete Springer Journals |
subjects | Derivation Mathematics Mathematics and Statistics Operators (mathematics) Orlicz space Riemann manifold |
title | Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20and%20Compact%20Solvability%20of%20the%20Exterior%20Derivation%20Operator%20in%20Orlicz%20Spaces&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Kopylov,%20Ya.%20A.&rft.date=2023-10-04&rft.volume=276&rft.issue=1&rft.spage=98&rft.epage=110&rft.pages=98-110&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06727-0&rft_dat=%3Cgale_proqu%3EA773544861%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884700197&rft_id=info:pmid/&rft_galeid=A773544861&rfr_iscdi=true |