Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces

We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ 2 ∩ ∇...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-10, Vol.276 (1), p.98-110
1. Verfasser: Kopylov, Ya. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 1
container_start_page 98
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 276
creator Kopylov, Ya. A.
description We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ 2 ∩ ∇ 2 -regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support.
doi_str_mv 10.1007/s10958-023-06727-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2884700197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A773544861</galeid><sourcerecordid>A773544861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3680-595818576daedcf39b2469a482b30e6dca73f0d6cfaa9e728353303fbac7069b3</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhpfSQNMkf6AnQU89yJ1d7UraY3CdJhBqiJOzmNVKrsLuypXk4PTXR4kLwWCKDjMMz6Ovtyi-lDArAcT3WELbSAoVo8BFJSh8KE7LRjAqRdt8zD2IijIm6k_F5xgfIUtcstNi9cuHEQeCU0_mftygTmTlhyfs3ODSM_GWpN-GLHbJBOcD-ZHLEybnJ7LcmIApz1zuw-D0X7LKvonnxYnFIZqLf_WseLha3M-v6e3y58388pZqxiXQJt-4lI3gPZpeW9Z2Vc1brGXVMTC81yiYhZ5ri9gaUUnWMAbMdqgF8LZjZ8XX_b6b4P9sTUzq0W_DlI9UlZS1AChb8U6tcTDKTdangHp0UatLIVhT15KXmaJHqLWZ8hsHPxnr8viAnx3h8-rN6PRR4duBkJlkdmmN2xjVzerukK32rA4-xmCs2gQ3YnhWJajXvNU-b5XzVm95K8gS20sxw9PahPff-I_1Anjaqmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884700197</pqid></control><display><type>article</type><title>Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Kopylov, Ya. A.</creator><creatorcontrib>Kopylov, Ya. A.</creatorcontrib><description>We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ 2 ∩ ∇ 2 -regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06727-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Derivation ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Orlicz space ; Riemann manifold</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-10, Vol.276 (1), p.98-110</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3680-595818576daedcf39b2469a482b30e6dca73f0d6cfaa9e728353303fbac7069b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-023-06727-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-023-06727-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kopylov, Ya. A.</creatorcontrib><title>Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ 2 ∩ ∇ 2 -regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support.</description><subject>Derivation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Orlicz space</subject><subject>Riemann manifold</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rGzEQhpfSQNMkf6AnQU89yJ1d7UraY3CdJhBqiJOzmNVKrsLuypXk4PTXR4kLwWCKDjMMz6Ovtyi-lDArAcT3WELbSAoVo8BFJSh8KE7LRjAqRdt8zD2IijIm6k_F5xgfIUtcstNi9cuHEQeCU0_mftygTmTlhyfs3ODSM_GWpN-GLHbJBOcD-ZHLEybnJ7LcmIApz1zuw-D0X7LKvonnxYnFIZqLf_WseLha3M-v6e3y58388pZqxiXQJt-4lI3gPZpeW9Z2Vc1brGXVMTC81yiYhZ5ri9gaUUnWMAbMdqgF8LZjZ8XX_b6b4P9sTUzq0W_DlI9UlZS1AChb8U6tcTDKTdangHp0UatLIVhT15KXmaJHqLWZ8hsHPxnr8viAnx3h8-rN6PRR4duBkJlkdmmN2xjVzerukK32rA4-xmCs2gQ3YnhWJajXvNU-b5XzVm95K8gS20sxw9PahPff-I_1Anjaqmc</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Kopylov, Ya. A.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20231004</creationdate><title>Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces</title><author>Kopylov, Ya. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3680-595818576daedcf39b2469a482b30e6dca73f0d6cfaa9e728353303fbac7069b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Derivation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Orlicz space</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopylov, Ya. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopylov, Ya. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-10-04</date><risdate>2023</risdate><volume>276</volume><issue>1</issue><spage>98</spage><epage>110</epage><pages>98-110</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ 2 ∩ ∇ 2 -regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06727-0</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2023-10, Vol.276 (1), p.98-110
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2884700197
source Springer Nature - Complete Springer Journals
subjects Derivation
Mathematics
Mathematics and Statistics
Operators (mathematics)
Orlicz space
Riemann manifold
title Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20and%20Compact%20Solvability%20of%20the%20Exterior%20Derivation%20Operator%20in%20Orlicz%20Spaces&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Kopylov,%20Ya.%20A.&rft.date=2023-10-04&rft.volume=276&rft.issue=1&rft.spage=98&rft.epage=110&rft.pages=98-110&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06727-0&rft_dat=%3Cgale_proqu%3EA773544861%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884700197&rft_id=info:pmid/&rft_galeid=A773544861&rfr_iscdi=true