Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces
We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ 2 ∩ ∇...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-10, Vol.276 (1), p.98-110 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ
2
∩ ∇
2
-regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-023-06727-0 |