Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces

We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ 2 ∩ ∇...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-10, Vol.276 (1), p.98-110
1. Verfasser: Kopylov, Ya. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ 2 ∩ ∇ 2 -regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-023-06727-0