An interpolation result for \(A_1\) weights with applications to fractional Poincaré inequalities

We characterize the real interpolation space between weighted \(L^1\) and \(W^{1,1}\) spaces on arbitrary domains different from \(\mathbb{R}^n\), when the weights are positive powers of the distance to the boundary multiplied by an \(A_1\) weight. As an application of this result we obtain weighted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
1. Verfasser: Drelichman, Irene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize the real interpolation space between weighted \(L^1\) and \(W^{1,1}\) spaces on arbitrary domains different from \(\mathbb{R}^n\), when the weights are positive powers of the distance to the boundary multiplied by an \(A_1\) weight. As an application of this result we obtain weighted fractional Poincaré inequalities with sharp dependence on the fractional parameter \(s\) (for \(s\) close to 1) and show that they are equivalent to a weighted Poincaré inequality for the gradient.
ISSN:2331-8422