On the Smith-Thom deficiency of Hilbert squares
We give an expression for the Smith-Thom deficiency of the Hilbert square \(X^{[2]}\) of a smooth real algebraic variety \(X\) in terms of the rank of a suitable Mayer-Vietoris mapping in several situations. As a consequence, we establish a necessary and sufficient condition for the maximality of \(...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an expression for the Smith-Thom deficiency of the Hilbert square \(X^{[2]}\) of a smooth real algebraic variety \(X\) in terms of the rank of a suitable Mayer-Vietoris mapping in several situations. As a consequence, we establish a necessary and sufficient condition for the maximality of \(X^{[2]}\) in the case of projective complete intersections, and show that with a few exceptions no real nonsingular projective complete intersection of even dimension has maximal Hilbert square. We also provide new examples of smooth real algebraic varieties with maximal Hilbert square. |
---|---|
ISSN: | 2331-8422 |