On the Uniqueness of Convex Central Configurations in the Planar -Body Problem

In this paper, we provide a rigorous computer-assisted proof (CAP) of the conjecture that in the planar four-body problem there exists a unique convex central configuration for any four fixed positive masses in a given order belonging to a closed domain in the mass space. The proof employs the Krawc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2023, Vol.28 (4-5), p.512-532
Hauptverfasser: Sun, Shanzhong, Xie, Zhifu, You, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we provide a rigorous computer-assisted proof (CAP) of the conjecture that in the planar four-body problem there exists a unique convex central configuration for any four fixed positive masses in a given order belonging to a closed domain in the mass space. The proof employs the Krawczyk operator and the implicit function theorem (IFT). Notably, we demonstrate that the implicit function theorem can be combined with interval analysis, enabling us to estimate the size of the region where the implicit function exists and extend our findings from one mass point to its neighborhood.
ISSN:1560-3547
1560-3547
1468-4845
DOI:10.1134/S1560354723520076