A Remark on the Uniqueness of Solutions to Hyperbolic Conservation Laws

Given a strictly hyperbolic n × n system of conservation laws, it is well known that there exists a unique Lipschitz semigroup of weak solutions, defined on a domain of functions with small total variation, which are limits of vanishing viscosity approximations. The aim of this note is to prove that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2023-12, Vol.247 (6), p.106, Article 106
Hauptverfasser: Bressan, Alberto, De Lellis, Camillo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a strictly hyperbolic n × n system of conservation laws, it is well known that there exists a unique Lipschitz semigroup of weak solutions, defined on a domain of functions with small total variation, which are limits of vanishing viscosity approximations. The aim of this note is to prove that every weak solution taking values in the domain of the semigroup, and whose shocks satisfy the Liu admissibility conditions, actually coincides with a semigroup trajectory.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-023-01936-y