A central limit theorem for random disc-polygons in smooth convex discs
In this paper we prove a quantitative central limit theorem for the area of uniform random disc-polygons in smooth convex discs whose boundary is \(C^2_+\). We use Stein's method and the asymptotic lower bound for the variance of the area proved by Fodor, Gr\"unfelder and Vígh (2022).
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove a quantitative central limit theorem for the area of uniform random disc-polygons in smooth convex discs whose boundary is \(C^2_+\). We use Stein's method and the asymptotic lower bound for the variance of the area proved by Fodor, Gr\"unfelder and Vígh (2022). |
---|---|
ISSN: | 2331-8422 |