Irregularity Index and Spherical Densities of the Penta-Sierpinski Gasket

We compute the centred Hausdorff measure, C s ( P ) ∼ 2.44 , and the packing measure, P s ( P ) ∼ 6.77 , of the penta-Sierpinski gasket, P , with explicit error bounds. We also compute the full spectra of asymptotic spherical densities of these measures in P , which, in contrast with that of the Sie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2023-12, Vol.20 (6), Article 322
Hauptverfasser: Mera, María Eugenia, Morán, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute the centred Hausdorff measure, C s ( P ) ∼ 2.44 , and the packing measure, P s ( P ) ∼ 6.77 , of the penta-Sierpinski gasket, P , with explicit error bounds. We also compute the full spectra of asymptotic spherical densities of these measures in P , which, in contrast with that of the Sierpinski gasket, consists of a unique interval. These results allow us to compute the irregularity index of P , I ( P ) ∼ 0.6398 , which we define for any self-similar set E with open set condition as I ( E ) = 1 - C s ( E ) P s ( E ) .
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-023-02528-6