Highly Efficient Modified Constructed Wetlands Using Waste Materials for Natural Acid Mine Drainage Treatment

Coal-mining activities have well-documented adverse effects on both the environment and human health. Acid mine drainage, a pivotal concern, necessitates effective interventions. This study introduces a novel solution: a modified constructed wetlands crafted exclusively from waste materials, ensurin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-10, Vol.15 (20), p.14869
Hauptverfasser: Wibowo, Yudha Gusti, Wijaya, Candra, Yudhoyono, Aryo, Sudibyo, Yuliansyah, Ahmad Tawfiequrrahman, Safitri, Hana, Tsabitah, Natasya, Nur’ani, Herlina, Khairurrijal, Khairurrijal, Petrus, Himawan Tri Bayu Murti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coal-mining activities have well-documented adverse effects on both the environment and human health. Acid mine drainage, a pivotal concern, necessitates effective interventions. This study introduces a novel solution: a modified constructed wetlands crafted exclusively from waste materials, ensuring cost-effectiveness. The innovation yielded exceptional results, achieving a noteworthy reduction of up to 99% in heavy metal concentrations, alongside swift pH normalization. What sets this study apart is its potential beyond the laboratory setting; the utilization of waste materials and low-cost methodologies underscores its scalability and practicality. This solution addresses immediate challenges and showcases promise for real-world implementation. Moreover, the results of the study extend to its insights, which offer a comprehensive examination of the method’s reusability prospects, illuminating its sustained impacts; the recommendations for future action enhance its practical significance. This study marks a significant advancement in tackling acid mine drainage. The modified constructed wetlands, driven by cost-effective waste materials, embody scalable and sustainable potential. With its holistic outlook and strategic roadmap, this study holds the key to transforming acid mine drainage challenges, particularly in rural and developing regions.
ISSN:2071-1050
2071-1050
DOI:10.3390/su152014869