Shaking Table Tests on Seismic Capacity Assessment of Basic Unit of Mineral Wool Ceilings Supported by Iron Sheet-Backed Painted Runners

Mineral wool ceilings supported by iron sheet-backed painted runners are commonly used in public buildings without specific seismic design intensity requirement, which is not good for resilient civil infrastructure. However, standard and fundamental seismic capacity data concerned with the use of mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-10, Vol.15 (20), p.14922
Hauptverfasser: Wang, Duozhi, Wang, Yixing, Lu, Weikang, Xie, Li, Wang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mineral wool ceilings supported by iron sheet-backed painted runners are commonly used in public buildings without specific seismic design intensity requirement, which is not good for resilient civil infrastructure. However, standard and fundamental seismic capacity data concerned with the use of mineral wool ceilings are lacking. Accordingly, in this study, nine groups of prototype specimens of basic ceiling units were designed based on construction requirements, and 90 different test scenarios were conducted. The PGAx input increased from 0.10 g to 1.50 g over ten runs for each group of specimens. Two failure processes and six types of damage phenomena as well as their corresponding repair measures were identified. Moreover, the influence of suspension devices, panel specifications, boundary conditions, and other construction features on the seismic response was investigated. When peak floor acceleration (PFA) was low, the hanger rod and hanger rod–diagonal wire effectively reduced the percentage of fallen ceiling panels. However, when the PFA was high, the hanger rod–diagonal wire aggravated the damage. The use of an additional wire hanger on the main runners, a large lightweight ceiling panel, a high suspension height, and a fixed boundary effectively reduced the percentage of panels falling from the basic ceiling unit and improved the seismic capacity. The use of a large panel in which the amount of material was increased by 1.7% effectively reduced the percentage of fallen ceiling panels. Moreover, fixing the boundary joints with adhesive was a convenient method for improving seismic capacity at a low cost. The results contribute to enhancing resilient civil infrastructure and sustainability.
ISSN:2071-1050
2071-1050
DOI:10.3390/su152014922