Dynamic Management of Urban Coastal Traffic and Port Access Control

Urban traffic congestion and vehicle/passenger port recurring delays are major obstacles of coastal urban area sustainability. Most research in coastal urban road management has focused on congestion detection without the effective integration of the dynamic interactions with port queueing systems....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-10, Vol.15 (20), p.14871
Hauptverfasser: Marousi, Konstantina P, Stephanedes, Yorgos J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Urban traffic congestion and vehicle/passenger port recurring delays are major obstacles of coastal urban area sustainability. Most research in coastal urban road management has focused on congestion detection without the effective integration of the dynamic interactions with port queueing systems. For securing coastal city environmental, social and economic efficiency, this paper develops and tests a dynamic urban coastal traffic and port management system. The integrated system controls traffic and port gates’ operations based on ITS/C-ITS methodologies. The system integrates dynamic models for congestion detection, using ANN and a parameterized model, on a coastal urban road network that leads to a city port and identifies optimal solutions for road traffic and port queuing gate control. The system communicates with users via connected vehicles and VMS. The system was tested in a coastal urban road leading to Patras Southern Port, Greece, and at port control gates. Field and simulation data were used to assess system performance and social–environmental impacts. The results reveal that the system’s application offers benefits to the individual driver moving towards the Port to board a ship (gaining at least 7 min and consuming 0.306 L less fuel) as well as to society (39.72% increase in traffic safety) and environment (1,445,132 g CO2 emission reduction).
ISSN:2071-1050
2071-1050
DOI:10.3390/su152014871