Boosting CO2 Hydrogenation to Formate over Edge‐Sulfur Vacancies of Molybdenum Disulfide
Synthesis of formate from hydrogenation of carbon dioxide (CO2) is an atom‐economic reaction but is confronted with challenges in developing high‐performance non‐precious metal catalysts for application of the process. Herein, we report a highly durable edge‐rich molybdenum disulfide (MoS2) catalyst...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-11, Vol.135 (45) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synthesis of formate from hydrogenation of carbon dioxide (CO2) is an atom‐economic reaction but is confronted with challenges in developing high‐performance non‐precious metal catalysts for application of the process. Herein, we report a highly durable edge‐rich molybdenum disulfide (MoS2) catalyst for CO2 hydrogenation to formate at 200 °C, which delivers a high selectivity of over 99 % with a superior turnover frequency of 780.7 h−1 surpassing those of previously reported non‐precious metal catalysts. Multiple experimental characterization techniques combined with theoretical calculations reveal that sulfur vacancies at MoS2 edges are the active sites and the selective production of formate is enabled via a completely new water‐mediated hydrogenation mechanism, in which surface OH* and H* species in dynamic equilibrium with water serve as moderate hydrogenating agents for CO2 with residual O* reduced by hydrogen. This study provides a new route for developing low‐cost high‐performance catalysts for CO2 hydrogenation to formate. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.202307086 |